Glyxambi
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 2771
  • Home
  • Print this page
  • Email this page


 
   Table of Contents      
ORIGINAL ARTICLE
Year : 1989  |  Volume : 37  |  Issue : 3  |  Page : 134-141

Systemic aspirin and systemic vitamin E in senile cataracts : cataract V


Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi- 110 029, India

Correspondence Address:
Y R Sharma
Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi- 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 2632449

Rights and PermissionsRights and Permissions
  Abstract 

We undertook a prospective study in senile cataract patients using systemic aspirin and systemic vitamin E. Vitamin E treated eyes did show less progression of PSC opacities extent and less new nuclear opacities during the follow-up, but overall vitamin E treated eyes did no better than the control group eyes. More eyes in systemic aspirin treated group maintained the initial vision and loss of vision in the aspirin group was also less marked. Aspirin also caused a significant less mean increase in cortical opacity extent, nuclear/opacity and density and PSC opacity extent and density as well as in ophthalmoscopically graded opacity extent and density. We suggest that aspirin is a potential drug which should be further evaluated in large double blind photodocumentated studies. The present data does not justify the recommendation that aspirin be prescribed for slowing down cataract progression. This must await large studies and confirmation.

Keywords: Aspirin, Vitamin E, Medical therapy of cataracts


How to cite this article:
Sharma Y R, Vajpayee R B, Bhatnagar R, Mohan M, Azad R V, Kumar M, Nath R. Systemic aspirin and systemic vitamin E in senile cataracts : cataract V. Indian J Ophthalmol 1989;37:134-41

How to cite this URL:
Sharma Y R, Vajpayee R B, Bhatnagar R, Mohan M, Azad R V, Kumar M, Nath R. Systemic aspirin and systemic vitamin E in senile cataracts : cataract V. Indian J Ophthalmol [serial online] 1989 [cited 2019 Sep 22];37:134-41. Available from: http://www.ijo.in/text.asp?1989/37/3/134/26068



Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view


Click here to view

  Introduction Top


Retrospective studies have suggested that use of sys­temic aspirin may slow down the progression of cata­ract [1],[2],[3],[4]. These studies were conducted because plasma tryptophane was found to be elevated in cataract pa­tients [5],[6]. This was not confirmed in another study but a later study indicated that free tryptophane levels were higher in cataract patients after an oral load of trypto­phane [7],[8]. Aspirin lowers the plasma tryptophane [9]. Among other aspirin actions which have been sug­gested as possibly anti-cataractogenic include aldose reductase inhibition [10], acetylation of lens crystallin [11], prevention of carbamylation of lens proteins and pre­vention of cyanate induced phase separation opacities [12] and numerous other effects [13]. Aspirin when admini­stered systemically binds to lens proteins and is retained by the lens for upto 24 hours [14]. The report that aspirin decelerates cataract progression attracted widespread attention [15] but also lead to acrimony and disagreement [16],[17]. A recent retrospective study has indicated that use of Aspirin reduces the risk of cataract formation [18]. Recently also, the role of oxidative stress in aetiopatho­genesis of cataract formation has been emphasisied [19],[20],[21] The enzyme superoxide dismutase is present in the lens and has been suggested to protect against the oxidative stress [22] However, in a prospective study superoxide dismutase was found ineffective in preventing canine cataracts [23]. Vitamin E, another natural antioxidant has been shown to prevent photo peroxidation of lens lip­ids [20]- Vitamin E has also been shown to slow down cata­ract progression in emory mice 19

We conducted prospective studies using systemic aspi­rin and Vitamin E to note any possible effect on senile cataract progression.


  Material and methods Top


The methodology and cataract classification system used in this study have been described 26,27Cataract patients seen in the cataract cell who consented to participate in the study involving systemic use of medications were randomly assigned to one of three groups. The control group was put on one placebo tablet containing aspirin tablet excipients tid PC, the second group was put on one tablet of Vitamin E 400 mg od AC and third group was put on one 325 mg. aspirin tablet tid PC. The control group receiving three placebo tablets daily served as control for both vitamin E and aspirin groups. The ne­cessity of using such a control group stemmed from our inability to obtain similar looking placebo tablets as that of vitamin E which were available to us in bright green pearl form as a proprietary preparation. Each patient was coded and 60 patients each were randomly assigned to one of three groups and each patient was requested to come for monthly follow up (some were permitted to come at 3 month intervals). At each follow up corrected visual acuity and detailed slit lamp and ophthalmoscopic examination was recorded on a printed proforma with­out referring to previous records. For inclusion in the study normal fundus examination and absence of any other significant ocular disorder were essential prerequisites. Initially a two years follow up for each patient was planned but at the conclusion of the study we chose to analyse data of all patients who completed at least 3 months follow up. In ten percent of patients in each group lens photographs using Zeiss slit lamp camera or Nikon zoom anterior segment camera were taken.


  Results Top


This study was again marred by high drop out rate though it was less than we had in senile cataract patients who were also diabetic and were put on topical sulindac therapy 28. In control group 39 patients (76 eyes), in vitamin E group 42 patients (80 eyes) and in aspirin group 43 cataract (81 eyes) completed at least three months follow up (Table 1). Some patients in the study were one eyed or the second eye was not considered in data analysis because of preexisting unilateral pathology and some developed unilateral pathology during the follow up in the three groups ranged from 3 to 23 months with mean of 9.25 months in control group, 10.45 months in vitamin E group and 10.55 months in aspirin group (Table 2). The majority of cataracts in all three groups initially was such that no separate date analysis was possible for pure groups (Table 3). The distribution of cortical and PSC opacities initially and finally was simi­lar in all the three groups, but increase in the percentage of nuclear opacities was significantly less in both vita­min E and aspirin groups as compared to the control group ([Table - 4] ; P < 0.05: P < 0.05). Significantly greater number of eyes in the aspirin group maintained initial vision during the follow up (55.55% P < 0.05%). In the control and vitamin E group 30.26% and 31.25% eyes maintained the same vision (Table 5). Loss of vision of upto 2 lines was similar in all three groups but loss of upto 4 lines or more occurred in significantly less eyes in the aspirin group (Table 5). In the control group this happened in 20 eyes (26.30%, in vitamin E group in 55 eyes (68.75%) and in the aspirin group in only 5 eyes (9.87%). Thus more eyes in the aspirin group tended to maintain initial vision and loss of upto 4 lines or more occurred in significantly less number of eyes. The percentage visual acuity loss was also significantly less marked in aspirin group (P < 0.05; [Table - 6]). Cortical cataract opacity extent actually showed greater mean increase in the vitamin E group (P < 0.011) but in aspirin group mean increase in cortical opacity extent was sig­nificantly less (Table 7). All three groups showed similar mean increase in density of cortical opacity (Table 8). In the vitamin E group both nuclear opacity extent and density showed a significant greater mean increase as compared to control [Table - 9][Table - 10]. In the aspirin group also the mean increase in the extent of nuclear opacity was little greater than in the control group which was not statistically significant but density of nuclear opacity showed very significant less mean increase in the aspirin group (PC < 0.004; [Table - 10]). The PSC opacity extent showed significant less mean increase in both Vitamin E and aspirin groups (both P < 0.05) but only the aspirin group showed less mean increase in density P < 0.05; [Table - 10][Table - 11]. In ophthalmoscopically graded opacity extent the Vitamin E group, eyes showed lesser mean increase than the control group but oph­thalmoscopically graded density showed marked mean increase in vitamin E group (P < 0.05). In contradiction in the aspirin group both ophthalmoscopically graded extent and density showed significant less mean in­crease as compared to the control group (p < 0.05; [Table - 13][Table - 14]). The data obtained was analysed for statistical significance using IBM-100 home computer using sta­tistics programme. The photographic data on patients follow up was helpful in grading opacity extent or density.


  Discussion Top


The suggestion that aspirin slows down cataract prog­ress had been presented before [1],[2],[3],[4] Those data were based on retrospective studies and have been criticized [16] An independent study also supported that long term usage of aspirin and aspirin-like drugs lessens the risk of cataract. [18] This study ,vas also based on retrospective data analysis. We undertook this prospective study primarily to study what effect aspirin has on cataract progression. Various constraints precluded proper photodocumentation and a double blind protocol 26,27 For the same reason, vitamin E studies were not possible using a suitable placebo and for both aspirin and vita­min E groups, a single control group had to be used. We recognise the various pitfalls of our studies though all possible steps were taken to obviate (lessen) observer bias. Because a number of parameters were studied objectively by more than one observer and because previous patient data was never referred to during follow up, we suggest our data to be fairly reliable. The present study clearly indicates that more aspirin treated eyes maintain the same vision and visual loss in them tends to be less marked than in control group eyes. This was not noted in the vitamin E group. Development of new nuclear opacities during follow up was significantly less in both vitamin E and aspirin groups. Other than this the only parameter studied where vitamin E treated eyes showed less mean increase was PSC opacity extent. But in the vitamin E group cortical opacity extent, nu­clear opacity extent and density and ophthalmoscopi­cally graded opacity density all showed a significant more increase than control group. In the aspirin group cortical opacity extent, nuclear opacity density, PSC opacity extent and density and ophthalmoscopically graded opacity extent and density all showed signifi­cant less mean increase compared to control group eyes.

The data indicates that aspirin, whatever its exact mode of action, is a potential drug which should be further tested in large double blind photo-documented mul­ticentric studies. The present data does not justify the recommendation that systematic aspirin be used in medical management of senile cataracts. This must await further studies and confirmation.

While in vitamin E treated eyes increase in PSC opacity extent was considerably less and development of new nuclear opacities during follow up was less, overall the present data does not justify further large scale clinical cataract studies with vitamin E. This must await more basic data and more definitive data suggesting use of vitamin E for studies on medical therapy of cataracts.


  Acknowledgement Top


We thank E. Merck India for supplying us vitamin E tablets generously. We gratefully thank ICMR, India, for partly supporting this study. During part of this study, Dr. Y. R. Sharma was appointed under supernumerary research cadre scheme at Dr. R. P. Centre. We also thank all residents who referred their cases to the cataract cell.


  Note Top


None of the authors has any kind of proprietary interest in any form in any of the drugs studied. This includes glutathione, sulindac, aspirin and vitamin E.

 
  References Top

1.
Collier E. Rheumatoid arthritis and cataract surgery. Int. Ophthalmol; 2:127-129,1980.  Back to cited text no. 1
    
2.
Cotlier E, Sharma Y. R. Aspirin and senile cataracts in rheumatoid arthritis. The lancet; Feb 7: 338-339, 1981.  Back to cited text no. 2
    
3.
Cotlier E. Senile cataracts : Evidence for acceleration by diabetes and deceleration by salicylate. Am J pphthalmol; 16:113-118, 1981.  Back to cited text no. 3
    
4.
Cotlier E. Aspirin effect on cataract formation in patients with rheumatoid arthiritis or combined to diabetes. Int. ophthalmol; 3:173-177,1981.  Back to cited text no. 4
    
5.
Cotlier E, Sharma Y R Zuckerman J, Puklin J, Teasely B, Irvine J. Plasma tryptophane in humans with diabetic and senile cataracts. Exp eye res; 33 247-252, 1981.  Back to cited text no. 5
    
6.
Chadwick C, Phipps D A, Powell C. Serum Tryptophane and cataract. The Lancet; Sept 21: 583, 1981.  Back to cited text no. 6
    
7.
Allergi E, Angi M. Plasma Tryptophane in senile cataract. The Lancet; July 18:157,1981.  Back to cited text no. 7
    
8.
Rinaldl E, Miele L, Pulcini D, Menna A, Pletra F D, Cotticelli L, et al. Alteration of serum tryptophane metabolism in patients suffering from senile cataract. Metab ophthalmol - Paed and syst; 8 : 16-19, 1984.  Back to cited text no. 8
    
9.
Smith HG, Lakatos C. Effects of acetylsalicylic acid on serum proteinbinding and metabolism of Tryptophan in man. J pharm pharmacol; 23: 180-189, 1971.  Back to cited text no. 9
    
10.
Sharma Y R, Cotlier E. Inhibition of lens and cataract aldose reductase by protein-bound anti-rheumatic drugs: Salicylate, indomethacin, oxyphenbutazone, Sulindac. Exp eye res; 35: 21-27,1982.  Back to cited text no. 10
    
11.
Rao G N, Lardis M P, Cotlier E. Acetylation of lens crystallins: A possible mechanism by which aspirin could prevent cataract formation. Biochem Biophys res comm; 128:1125-1132,1985.  Back to cited text no. 11
    
12.
Crompton M, Rixa K C, Harding J. J. Aspirin prevents carbamylation of lens protiens and prevents cyanate induced phase separation opacities in vitro: A possible mechanism by which aspirin could prevent cataract. Exp eye res; 40: 279-311,1985.  Back to cited text no. 12
    
13.
Cotlier E., Aspirin and cataracts : from the laboratory to clinical trials. Proceedings of the centennial year of University of Illinois : 207-215, 1981.  Back to cited text no. 13
    
14.
Collier E, Sharma Y R, Niven T, Brescia M. Distribution of salicylate in lens and intraocular fluids and its effects on cataract formation. Am. J. Med, 74 :83-90,1983.  Back to cited text no. 14
    
15.
Medical News. Study to begin on whether aspirin can delay senile cataract formation. JAMA;244 : 2593-2594, 1980.  Back to cited text no. 15
    
16.
Seigal D, Sperduto R D, Ferris F Cm. Aspirin and cataracts. Ophthalmol, 89 :47A-48A, 1982.  Back to cited text no. 16
    
17.
Collier E. Reply to view point. Ophthalmol; 89: 48A-49A, 1982.  Back to cited text no. 17
    
18.
Heyningen R V, Harding J J. Do aspirin like analgesics protect against cataract. The lancet; May 17:1111-1113,1986.  Back to cited text no. 18
    
19.
Varma S D, Chand D, Sharma YR, Kuck R D, Richards R D. Oxidative stress on lens : Role of light and oxygen. Current eye res; 3:35-57, 1984.  Back to cited text no. 19
    
20.
Varma S D, Srivastava V K, Richards R D. Photoperoxidation in lens and cataract formation: Preventive role of superoxide dismutase, catalase and vitamin C. Ophth res; 14:167-175,1982.  Back to cited text no. 20
    
21.
Jernigan HM. Role of hydrogen peroxide in Riboflavin-sensitised photodynamic damage to cultured rat lenses. Exp eye res; 41:121-129,1985.  Back to cited text no. 21
    
22.
Bhuyan K C, Bhuyan D K. Superoxide dismutase of the eye. Biochim et Biophys Acta; 542: 28-38,1978.  Back to cited text no. 22
    
23.
Brainard J, Hanna C, Petursson G. Evaluation of superoxide dismutase in medical treatment of canine cataract. Arch Ophthalmol; 100: 1832-1834, 1982.  Back to cited text no. 23
    



 
 
    Tables

  [Table - 1], [Table - 2], [Table - 3], [Table - 4], [Table - 5], [Table - 6], [Table - 7], [Table - 8], [Table - 9], [Table - 10], [Table - 11], [Table - 12], [Table - 13], [Table - 14]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Introduction
Material and methods
Results
Discussion
Acknowledgement
Note
References
Article Tables

 Article Access Statistics
    Viewed2901    
    Printed93    
    Emailed1    
    PDF Downloaded12    
    Comments [Add]    

Recommend this journal