Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 2715
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2009  |  Volume : 57  |  Issue : 3  |  Page : 197-201

Analysis of single nucleotide polymorphisms of CRYGA and CRYGB genes in control population of western Indian origin


1 Biological Sciences Group, Birla Institute of Technology and Science, Pilani - 333 031, Rajasthan, India
2 Iladevi Cataract and IOL Research Centre, Gurukul Road, Memnagar Ahmedabad - 52, Gujarat, India

Correspondence Address:
Suman Kapur
Chief Community Welfare and International Relations Unit, Professor, Biological Sciences Group, Birla Institute of Technology and Science, Pilani, Rajasthan - 333 031
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0301-4738.49393

Rights and Permissions

Aim: Polymorphisms in γ-crystallins ( CRYG ) can serve as markers for lens differentiation and eye disorders leading to cataract. Several investigators have reported the presence of sequence variations within crystallin genes, with or without apparent effects on the function of the proteins both in mice and humans. Delineation of these polymorphic sites may explain the differences observed in the susceptibility to cataract observed among various ethnic groups. An easier Restriction Fragment Length Polymorphism (RFLP)-based method has been used to detect the frequency of four single nucleotide polymorphisms (SNPs) in CRYGA / CRYGB genes in control subjects of western Indian origin. Materials and Methods: A total of 137 healthy volunteers from western India were studied. Examination was performed to exclude volunteers with any ocular defects. Polymerase chain reaction (PCR)-RFLP based method was developed for genotyping of G198A (Intron A), T196C (Exon 3) of CRYGA and T47C (Promoter), G449T (Exon 2) of CRYGB genes. Results: The exonic SNPs in CRYGA and CRYGB were found to have an allele frequency 0.03 and 1.00 for ancestral allele respectively, while frequency of non-coding SNP in CRYGA was 0.72. Allele frequency of T90C of CRYGB varied significantly ( P = 0.02) among different age groups. An in-silico analysis reveals that this sequence variation in CRYGB promoter impacts the binding of two transcription factors, ACE2 (Member of CLB2 cluster) and Progesterone Receptor (PR) which may impact the expression of CRYGB gene. Conclusions: This study establishes baseline frequency data for four SNPs in CRYGA and CRYGB genes for future case control studies on the role of these SNPs in the genetic basis of cataract.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2751    
    Printed75    
    Emailed0    
    PDF Downloaded365    
    Comments [Add]    
    Cited by others 3    

Recommend this journal