• Users Online: 74776
  • Home
  • Print this page
  • Email this page

   Table of Contents      
ORIGINAL ARTICLE
Year : 2010  |  Volume : 58  |  Issue : 5  |  Page : 385-388

Comparison of central corneal thickness measurements with the Galilei dual Scheimpflug analyzer and ultrasound pachymetry


Dada Laser Eye Institute, Pune, India

Date of Submission20-May-2009
Date of Acceptance18-Mar-2010
Date of Web Publication2-Aug-2010

Correspondence Address:
Jeevan S Ladi
Dada Laser Eye Institute, A Wing, Gulmohar Apartments, Above State Bank of India, East Street, Camp, Pune-411 001
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0301-4738.67045

Rights and Permissions
  Abstract 

Purpose: To compare corneal pachymetry assessment by the Galilei dual Scheimpflug analyzer with that done by ultrasound (US) pachymetry. Materials and Methods: Forty six patients (92 eyes) were subjected to corneal pachymetry assessment by Galilei dual Scheimpflug analyzer and US. All the readings were taken by a single operator. Intraoperator repeatability for the Galilei was assessed by taking 10 readings in one eye each of 10 patients. To study the interoperator reproducibility for the Galilei, two observers took a single reading in both the eyes of 25 patients. Results: The mean central corneal thickness (CCT) measured by US was 541.83 ± 30.56 μm standard deviation (SD) and that measured by Galilei was 541.27 ± 30.07 μm (SD). There was no statistically significant difference between both the methods (P < 0.001). The coefficient of repeatability was 0.43% while the coefficient of reproducibility was 0.377% for the Galilei. Conclusion: Objective, noncontact measurement of the CCT with the Galilei dual Scheimpflug analyzer was convenient, had excellent intraoperator repeatability and interoperator reproducibility, and findings were similar to those obtained with standard US pachymetry.

Keywords: Central corneal thickness, dual Scheimpflug analyzer, ultrasound pachymetry


How to cite this article:
Ladi JS, Shah NA. Comparison of central corneal thickness measurements with the Galilei dual Scheimpflug analyzer and ultrasound pachymetry. Indian J Ophthalmol 2010;58:385-8

How to cite this URL:
Ladi JS, Shah NA. Comparison of central corneal thickness measurements with the Galilei dual Scheimpflug analyzer and ultrasound pachymetry. Indian J Ophthalmol [serial online] 2010 [cited 2024 Mar 29];58:385-8. Available from: https://journals.lww.com/ijo/pages/default.aspx/text.asp?2010/58/5/385/67045

Accurate measurement of central corneal thickness (CCT) has assumed significance in ophthalmic practice. It is important in corneal refractive surgery, especially laser assisted in situ keratomileusis (LASIK) which is the most commonly performed corneal procedure currently. [1] The CCT allows determination of the amount of stromal ablation which can be safely carried out minimizing the risk of iatrogenic keratectasia. [1] CCT is also used in glaucoma practice to modify the intraocular pressure reading for accuracy. [2]

Applanation ultrasound (US) pachymetry is currently the most often method used for the measurement of CCT. This method has been reported to have a high degree of intraoperator and interoperator reproducibility. [3] However, placement of the probe on the corneal center is subjective and operator-dependent errors due to off-center placement (leading to thicker measurements) are a possibility. [4],[5] Errors can be caused by indentation leading to slightly thinner readings. [6] In addition, disadvantages like patient discomfort, epithelial damage and risk of infection exist. Hence, it is not surprising that noncontact techniques to measure CCT are gaining popularity. Partial coherence interferometry (PCI), [7] optical coherence tomography (OCT), [8] scanning slit tomography/pachymetry [9] are some of the optical techniques introduced to measure CCT.

The Galilei dual Scheimpflug analyzer (Ziemer, Switzerland), uses two rotating Scheimpflug cameras combined with a Placido disk to image the anterior segment of the eye. It is a noncontact instrument which provides data on anterior and posterior corneal topography, complete corneal pachymetry, lens densitometry and two-dimensional and three-dimensional anterior segment imaging. The purpose of this study was to report our initial experience in measuring CCT with this new device and compare it with the gold standard US pachymetry.


  Materials and Methods Top


Forty six patients (92 eyes) who presented to our center were prospectively studied. Patients with ocular disease (other than refractive error), contact lens wearers and those with a history of previous eye surgery were excluded. All patients were subjected to a comprehensive ophthalmic examination including vision, refraction, slit lamp examination, CCT measurement with two methods, followed by measurement of intraocular pressure and dilated fundus examination.

CCT measurements were first taken on the Galilei analyzer. Three readings were taken for each eye. A gap of 1 minute was given after each reading and the alignment was freshly done each time. Following this, the cornea was anesthetized with topical 0.5% proparacaine and five readings were taken with US pachymetry (Echorule, Biomedix, Bangalore, India). All the readings on the Galilei and US pachymeter were taken by a single trained optometrist.

Galilei measurements were obtained as per the manufacturers' instructions. The patient was comfortably seated with chin fully placed on the chin rest and forehead against the strap. The patient looked at the target (red spot) and was allowed to blink. The device was brought in focus by aligning the measurement head of the Galilei. Alignment was considered correct when the red cross (cross hair) passed through the white spots and the single red line touched the corneal epithelium. The iris was seen in sharp focus on the screen. The patient was asked to blink once, open the eye wide and the reading was taken. The time taken for scanning was 2-3 seconds.

US pachymetry readings were taken by aligning the probe as perpendicularly as possible on the central cornea. Five readings were taken. The highest and lowest values were excluded and the mean of the remaining three were used for the analysis.

The repeatability of the Galilei analyzer was studied. Ten successive scans were obtained by a single operator in one eye each of 10 patients. An interval of 1 minute was given between two readings and alignment was freshly done each time.

Interoperator reproducibility was studied in the following manner. Two operators took a single reading of the right and left eyes of 25 patients. An interval of 5 minutes was given between the two operators.

All the data were analyzed using the SPSS computer program for Windows (Version 11.5, SPSS, Inc., Chicago, Illinois).

Comparison of CCT

The results were entered as mean ± standard deviation (SD). All the data were tested for normality using skewness (acceptable range of normality is between -1 and +1) and kurtosis (acceptable range of normality is between -1 and +1). The statistical agreement between the two methods was assessed using interclass correlation coefficient. Bland-Altman plot was used to test the agreement between the two measuring techniques. A P value of less than 0.05 was considered as statistically significant.

Study of repeatability and reproducibility

The data were entered as mean (SD). All the data were tested for normality before analysis. In order to assess the pairwise statistical difference between the averages of two observers, the paired t-test was adopted. For each patient, the coefficient of repeatability was defined as the SD of the difference from the mean of the repeat measurements, divided by the mean response. The coefficient of interobserver reproducibility was defined as the SD of difference between the pairs of the measurements obtained by two observers, divided by the average of the means of each pair of observation. We have used definitions for repeatability and reproducibility adopted by the British Standards Institution as recommended by Bland and Altman. [10] A P value less than 0.05 was considered as statistically significant.


  Results Top


The results of repeatability study are shown in [Table 1]. The mean coefficient of repeatability for 10 readings in 10 patients was 0.43% which demonstrates good reliability.

The mean CCT value taken in 50 eyes using the Galilei for observer 1 was 527.8 ± 33.7 mm, while it was 527.9 ± 31.9 mm for observer 2. There was no statistically significant difference between them. (P = 0.739). The coefficient of interoperator reproducibility for the Galilei was 0.377%. This and the scatter plot depicted in [Figure 1] indicate good interobserver reproducibility.

The mean CCT obtained by US pachymetry for 92 eyes was 541.83 ± 30.56 mm (skewness -0.417 and kurtosis -0.312). The mean CCT by Galilei for 92 eyes was 541.27 ±30.07 mm (skewness -0.3 and kurtosis -0.151). Mean difference between the two methods was 0.55 mm. The interclass correlation coefficient was 0.978. There was no statistically significant difference between the CCT readings taken by Galilei and US (P < 0.001). Correlation between fellow eyes has been adjusted in the statistical analysis using multivariate linear regression.

[Figure 2] is a scatter plot with a no change line to compare the CCT measurement by the two methods. [Figure 3] is a Bland-Altman plot and shows good agreement between Galilei and US. The 95% limits of agreement were -11.93 to +13.03. The plot indicates that there is no systematic bias between the two methods (P = 0.612 by linear regression method between difference and average by two methods.)


  Discussion Top


Noncontact techniques like PCI and OCT have been shown to have high intraoperator repeatability and interoperator reproducibility in literature. [7],[8] This is important for a new instrument to gain widespread acceptance.

Anterior segment imaging using Scheimpflug analyzers was reported initially using the EAS-1000 (Nidek Co. Ltd.). [11] This model acquired a single image of the anterior segment. The Pentacam was an improvement over this, having a single rotating camera which acquires upto 50 images in a scan. The Galilei analyzer has two rotating Scheimpflug cameras, 180° apart, which record simultaneously. This helps to compensate for errors associated with scans at an oblique angle and increases the accuracy for measuring not only the central cornea but also the peripheral cornea (in spite of eye micromovements which are unavoidable).

Previous studies have shown the coefficient of repeatability to be 0.84% for the Pentacam, 0.33% for the optical low-coherence reflectometer (OLCR) pachymeter, and 0.71% for standard US pachymetry. [12] The OCT has been shown to have a coefficient of 2%. [8] In our study, the coefficient of repeatability for the Galilei was 0.43%. Menassa et al0.[13] have reported a remarkably low intraobserver and interobserver variation, this being the only report on the Galilei in the literature so far.

The coefficient of interobserver reproducibility was 0.37% in our study. This coefficient has been reported to be 1.10% for the Pentacam and 0.59% for the OLCR, [12] while it was 0.18% for OCT. [8] Another study by Lackner et al.[14] has shown the reproducibility by Pentacam to be the highest between Pentacam, Orbscan and US. Menassa et al.[13] have reported better interobserver reproducibility with the Galilei compared to Orbscan II.

Previous studies have reported that CCT measurements in healthy eyes by different instruments can be significantly different. In a study of 34 normal eyes, Modis et al.[9] have reported mean CCT to be 547 ± 49 μm by noncontact specular microscopy, 580 ± 43 μm by US, 602 ± 59 μm by Orbscan and 640 ± 43 μm by contact specular microscopy. Chakrabarti et al.[15] have reported Orbscan measurements to be 28 μm higher than those of US. Due to the considerable difference, Orbscan manufacturers recommended incorporation of an acoustic factor of 0.92. This was calculated to compensate for the effect of tear film whose thickness gets included while taking CCT measurements. Indeed after applying the correction factor, Wong et al.[16] have reported CCT to be 555.96 ± 32 μm with Orbscan and 555.11 ± 35 μm with US. Also, Suzuki et al.[17] have reported CCT to be 548.1 ± 33 μm with US and 546.9 ± 35.4 μm with Orbscan. Ho et al.[18] have recommended the use of a custom acoustic factor specific to the study site. They have used an acoustic factor of 0.89 for Orbscan II to obtain readings compatible with US. Similarly, Menassa et al.[13] have used a correction factor of 0.96 for Orbscan II. Lackner et al.[14] have reported an underestimation of 9.8 μm with the Pentacam as compared to US. Barkana et al.[12] have reported an underestimation of 6.09 μm with the Pentacam as compared to US, which was statistically significant.

Menassa et al.[13] have reported a mean difference of 6.8 μm between CCT readings by Galilei (551.7 ± 36.6) and US (558.5 ± 38.4), which was statistically significant. In our study, comparison of CCT measurements between the Galilei and US has shown that they differed by a mean of only 0.55 μm. This difference is not statistically significant. The 95% limits of agreement showed that the difference in measurements between the two methods was between -11.93 and +13.03 μm. This is remarkably close to the range of ±11 μm for the diurnal pachymetric variation of CCT. Noncontact methods would include the tear film thickness (5-7 μm) in CCT measurement. However, as suggested by Ho et al.,[18] US may also overestimate CCT due to the effect of analgesic eyedrops used before pachymetry. These can cause epithelial edema leading to increased corneal thickness. Further studies would be required to find out which method ultimately gives us the true CCT.

In conclusion, the Galilei analyzer can measure CCT with an excellent repeatability and reproducibility. This noncontact method of examination can thus be delegated to nonmedical personnel like technicians or optometrists. The pachymetry readings with Galilei showed good correlation with those of US pachymetry and there was no statistically significant difference between them.

To the best of our knowledge, this is the first study using the Galilei dual Scheimpflug analyzer in Indian Asian eyes.

 
  References Top

1.
Price FW Jr, Koller DL, Price MO. Central corneal pachymetry in patients undergoing laser in situ keratomileusis. Ophthalmology 1999;106:2216-20.  Back to cited text no. 1
[PUBMED]  [FULLTEXT]  
2.
Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular measures: A review and meta-analysis approach. Surv Ophthalmol 2000;44:367-408.  Back to cited text no. 2
[PUBMED]  [FULLTEXT]  
3.
Miglior S, Albe E, Guareschi M, Mandelli G, Gomarasca S, Orzalesi N. Intraobserver and interobserver reproducibility in the evaluation of ultrasonic pachymetry measurements of central corneal thickness. Br J Ophthalmol 2004;88:174-7.  Back to cited text no. 3
[PUBMED]  [FULLTEXT]  
4.
Buehl W, Stojanac D, Sacu S, Drexler W, Findl O. Comparison of three methods of measuring corneal thickness and anterior chamber depth. Am J Ophthalmol 2006;141:7-12.  Back to cited text no. 4
[PUBMED]  [FULLTEXT]  
5.
Findl O, Kriechbaum K, Sacu S, Kiss B, Polak K, Nepp J, et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg 2003;29:1950-5.   Back to cited text no. 5
[PUBMED]  [FULLTEXT]  
6.
Solomon OD. Corneal indentation during ultrasonic pachymetry. Cornea 1999;18:214-5.  Back to cited text no. 6
[PUBMED]  [FULLTEXT]  
7.
th Rainer G, Petternel V, Findl O, Schmetterer L, Skorpik C, Luksch A, et al. Comparison of ultrasound pachymetry and partial coherence interferometry in the measurement of central corneal thickness. J Cataract Refract Surg 2002;28:2142-5.   Back to cited text no. 7
    
8.
Muscat S, McKay N, Parks S, Kemp E, Keating D. Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography. Invest Ophthalmol Vis Sci 2002;43:1791-5.  Back to cited text no. 8
[PUBMED]  [FULLTEXT]  
9.
Modis L Jr, Langenbucher A, Seitz B. Scanning-slit and specular microscopic pachymetry in comparison with ultrasonic determination of corneal thickness. Cornea 2001;20:711-4.  Back to cited text no. 9
    
10.
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.  Back to cited text no. 10
[PUBMED]    
11.
Lam AK, Chan R, Woo GC, Pang PC, Chiu R. Intra-observer and inter-observer repeatability of anterior eye segment analysis system (EAS-1000) in anterior chamber configuration. Ophthalmic Physiol Opt 2002;22:552-9.  Back to cited text no. 11
[PUBMED]  [FULLTEXT]  
12.
Barkana Y, Gerber Y, Elbaz U, Schwartz S, Ken-Dror G, Avni I, et al. Central corneal thickness measurement with the Pentacam Scheimpflug system, optical low-coherence reflectometry pachymeter, and ultrasound pachymetry. J Cataract Refract Surg 2005;31:1729-35.  Back to cited text no. 12
[PUBMED]  [FULLTEXT]  
13.
Menassa N, Kaufmann C, Goggin M, Job OM, Bachmann LM, Thiel MA. Comparison and reproducibility of corneal thickness and curvature readings obtained by the Galilei and the Orbscan II analysis systems. J Cataract Refract Surg 2008;34:1742-7.   Back to cited text no. 13
[PUBMED]  [FULLTEXT]  
14.
Lackner B, Schmidinger G, Pieh S, Funovics MA, Skorpik C. Repeatability and reproducibility of central corneal thickness measurement with Pentacam, Orbscan, and ultrasound. Optom Vis Sci 2005;82:892-9.  Back to cited text no. 14
[PUBMED]  [FULLTEXT]  
15.
Chakrabarti HS, Craig JP, Brahma A, Malik TY, McGhee CN. Comparison of corneal thickness measurements using ultrasound and Orbscan slit-scanning topography in normal and post-LASIK eyes. J Cataract Refract Surg 2001;27:1823-8.  Back to cited text no. 15
[PUBMED]  [FULLTEXT]  
16.
Wong AC, Wong CC, Yuen NS, Hui SP. Correlational study of central corneal thickness measurements on Hong Kong Chinese using optical coherence tomography, Orbscan and ultrasound pachymetry. Eye (Lond) 2002;16:715-21.  Back to cited text no. 16
    
17.
Suzuki S, Oshika T, Oki K, Sakabe I, Iwase I, Amano S, et al. Corneal thickness measurements: Scanning-slit corneal topography and non contact specular microscopy versus ultrasonic pachymetry. J Cataract Refract Surg 2003;29:1313-8.  Back to cited text no. 17
    
18.
Ho T, Cheng A, Rao SK, Lau S, Leung C, Lam DS. Central corneal thickness measurements using Orbscan II, Visante, ultrasound, and Pentacam pacymetry after Laser in situ keratomileusis for myopia. J Cataract Refract Surg 2007;33:1177-82.  Back to cited text no. 18
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1]


This article has been cited by
1 Blind spot in ultrasound central corneal thickness measurement – Central corneal thickness of apex versus central corneal thickness of vertex
Prasanna Venkatesh Ramesh, Sathyan Parthasarathi, Abhinay Ashok, Rajesh Kumar John
Kerala Journal of Ophthalmology. 2023; 35(2): 187
[Pubmed] | [DOI]
2 Clinical evaluation of ocular biometry of dual Scheimpflug analyzer, GALILEI G6 and swept source optical coherence tomography, ANTERION
Boonsong Wanichwecharungruang, Anyarak Amornpetchsathaporn, Kittipong Kongsomboon, Wisakorn Wongwijitsook, Kornkamol Annopawong, Somporn Chantra
Scientific Reports. 2022; 12(1)
[Pubmed] | [DOI]
3 Comparative Analysis of Central Corneal Thickness in Four Fish Models
Jinpeng Li, Juan Du, Aiping Deng, Ziyang Chen, Yusong Guo, Zhongduo Wang
Zebrafish. 2022;
[Pubmed] | [DOI]
4 Sirius Scheimpflug–Placido versus ultrasound pachymetry for central corneal thickness: meta-analysis
Yili Jin, Colm McAlinden, Yong Sun, Daizong Wen, Yiran Wang, Jinjin Yu, Ke Feng, Benhao Song, Qinmei Wang, Shihao Chen, Jinhai Huang
Eye and Vision. 2021; 8(1)
[Pubmed] | [DOI]
5 Comparison of corneal thickness measurements using ultrasound pachymetry, noncontact tonopachy, Pentacam HR, and Fourier-domain OCT
Jung Sub Kim, Chang Rae Rho, Yeon Woo Cho, Jeongah Shin
Medicine. 2021; 100(16): e25638
[Pubmed] | [DOI]
6 A review of imaging modalities for detecting early keratoconus
Xuemin Zhang, Saleha Z. Munir, Syed A. Sami Karim, Wuqaas M. Munir
Eye. 2021; 35(1): 173
[Pubmed] | [DOI]
7 A Comparison of Central Corneal Thickness Measurements and Measurement Repeatability Using Three Imaging Modalities
Sang Earn Woo, Si Hyung Lee
Journal of the Korean Ophthalmological Society. 2021; 62(2): 184
[Pubmed] | [DOI]
8 Psychometric of the Curiosity and Exploration Inventory-II in Indonesia
Anggi Setyowati, Min-Huey Chung, Ah. Yusuf, Setya Haksama
Journal of Public Health Research. 2020; 9(3)
[Pubmed] | [DOI]
9 Comment on: Intraocular pressure and anetrior segment anatomy after phacoemulsification surgery
Yakup Aksoy, Taner Kar, Abdullah Kaya
Indian Journal of Ophthalmology. 2016; 64(1): 99
[Pubmed] | [DOI]
10 Comparación de la medición del grosor corneal central medido con un nuevo equipo de tomografía con cámara de Scheimpflug y anillos de Plácido (Sirius®) y paquimetría ultrasónica en sujetos sanos
Manuel Garza-León,Paola de la Parra-Colín,Tonatiuh Barrientos-Gutierrez
Revista Mexicana de Oftalmología. 2015;
[Pubmed] | [DOI]
11 Comparison of anterior chamber depth measurements of Nidek AL-Scan and Galilei Dual Scheimpflug Analyzer
Mehmet Serdar Dervisogullari,Yüksel Totan,Betül Güragaç
Contact Lens and Anterior Eye. 2014;
[Pubmed] | [DOI]
12 Comparison of anterior segment measurements with optical low-coherence reflectometry and rotating dual Scheimpflug analysis
Valentín Huerva,Francisco J. Ascaso,Jordi Soldevila,Laura Lavilla
Journal of Cataract & Refractive Surgery. 2014;
[Pubmed] | [DOI]
13 Investigation of the Human Anterior Segment in Normal Chinese Subjects Using a Dual Scheimpflug Analyzer
Xiaogang Wang,Qiang Wu
Ophthalmology. 2013; 120(4): 703
[Pubmed] | [DOI]
14 Characterization of the thickness of different corneal zones in glaucoma: effect on dynamic contour, Goldmann and rebound tonometries
Federico Saenz-Frances,Luis Jañez,Lara Borrego-Sanz,Jose Maria Martinez-de-la-Casa,Laura Morales-Fernandez,Enrique Santos-Bueso,Julian Garcia-Sanchez,Julian Garcia-Feijoo
Acta Ophthalmologica. 2013; : no
[Pubmed] | [DOI]
15 Comparison and Repeatability of Keratometric and Corneal Power Measurements Obtained by Orbscan II, Pentacam, and Galilei Corneal Tomography Systems
Alexandra Z. Crawford,Dipika V. Patel,Charles N.J. McGhee
American Journal of Ophthalmology. 2013; 156(1): 53
[Pubmed] | [DOI]
16 Comparison of Anterior Chamber Depth Measurements from the Galilei Dual Scheimpflug Analyzer with IOLMaster
Roma P. Patel,Rahul T. Pandit
Journal of Ophthalmology. 2012; 2012: 1
[Pubmed] | [DOI]
17 Corneal Thickness Measurement Using Orbscan, Pentacam, Galilei, and Ultrasound in Normal and Post-Femtosecond Laser In Situ Keratomileusis Eyes
Se-Hoon Park,Suk-Kyue Choi,Doh Lee,Eun-Jung Jun,Jin-Hyoung Kim
Cornea. 2012; 31(9): 978
[Pubmed] | [DOI]
18 Comparison of Central Corneal Thickness Measurements by Galilei Dual-Scheimpflug Analyzer®and Ultrasound Pachymeter in Myopic Eyes
Volkan Yeter,Baris Sönmez,Ümit Beden
Ophthalmic Surgery, Lasers, and Imaging. 2012; 43(2): 128
[Pubmed] | [DOI]
19 Corneal Thickness Measured by Dual Scheimpflug, Anterior Segment Optical Coherence Tomography, and Ultrasound Pachymetry
Dong Wook Kim,Ka Young Yi,Dong Gyu Choi,Young Joo Shin
Journal of the Korean Ophthalmological Society. 2012; 53(10): 1412
[Pubmed] | [DOI]
20 Comparing central corneal thickness measured using ultrasound pachymetry and the Pentacam in healthy subjects and patients with primary open-angle glaucoma | [Comparaison de læépaisseur cornéenne centrale mesurée par pachymétrie ultrasonore et par Pentacam chez les patients sains et les patients avec glaucome primaire à angle ouvert]
Saenz-Frances, F., Gonzalez-Pastor, E., Borrego-Sanz, L., Jerez-Fidalgo, M., Martinez-De-La-Casa, J., Mendez-Hernandez, C., Santos-Bueso, E., (...), Garcia-Feijoo, J.
Journal Francais dæOphtalmologie. 2012; 35(5): 333-337
[Pubmed]
21 Comparison of central corneal thickness measurements by Galilei Dual-Scheimpflug Analyzer® and ultrasound pachymeter in myopic eyes
Yeter, V., Sönmez, B., Beden, Ü.
Ophthalmic Surgery Lasers and Imaging. 2012; 43(2): 128-134
[Pubmed]
22 Inter-examiner agreement of the AS-OCT Visante corneal thickness
Rio-San Cristobal, A., Martin, R., Morejona, A., Galarreta, D.
Journal of Optometry. 2011; 4(3): 95-102
[Pubmed]
23 Comparison of central corneal thickness measurements in normal and keratoconic eyes using ultrasonic pachymetry and OCULUS pentacam | [Normal ve keratokonuslu gölerde ultrasonik pakimetri ve OCULUS pentacam ile ölçülen santral kornea kali{dotless}nli{dotless}klari{dotless}ni{dotless}n karşi{dotless}laşti{dotless}ri{dotless}lmasi{dotless}]
Büyük, K., Bozkurt, B., Kamiş, Ü., Özkaǧnici, A., Okudan, S.
Turk Oftalmoloiji Dergisi. 2011; 41(2): 104-107
[Pubmed]
24 Comparison of the precision of the Topcon SP-3000P specular microscope and an ultrasound pachymeter
Almubrad, T.M., Osuagwu, U.L., AlAbbadi, I., Ogbuehi, K.C.
Clinical Ophthalmology. 2011; 5(1): 871-876
[Pubmed]
25 Inter-examiner agreement of the AS-OCT Visante corneal thickness
Ana Rio-San Cristobal,Raul Martin,Angela Morejona,David Galarreta
Journal of Optometry. 2011; 4(3): 95
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Materials and Me...
Results
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed4867    
    Printed128    
    Emailed0    
    PDF Downloaded397    
    Comments [Add]    
    Cited by others 25    

Recommend this journal