• Users Online: 29601
  • Home
  • Print this page
  • Email this page

   Table of Contents      
ORIGINAL ARTICLE
Year : 2012  |  Volume : 60  |  Issue : 3  |  Page : 189-193

Effects of hydroquinone on retinal and vascular cells in vitro


1 Department of Ophthalmology, Gavin S. Herbert Eye Institute, University of California, Irvine, CA, USA; Lotus Eye Care Hospital, Coimbatore, Tamilnadu, India
2 Department of Ophthalmology, Gavin S. Herbert Eye Institute, University of California, Irvine, CA, USA; Royal Lancaster Infirmary, University Hospitals of Morecambe NHS Trust, Lancaster, United Kingdom
3 Departamento de Oftalmologia, Fundacion VER, Cordoba, Argentina
4 University at Buffalo, Center for Hearing and Deafness, Buffalo, NY, USA
5 Department of Ophthalmology, Gavin S. Herbert Eye Institute, University of California, Irvine, CA, USA

Date of Submission14-Feb-2011
Date of Acceptance21-Jan-2012
Date of Web Publication8-May-2012

Correspondence Address:
Cristina M Kenney
Department of Ophthalmology, University of California Irvine, Medical Center, 101 The City Drive, Orange, CA 92868, USA

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0301-4738.95869

Rights and Permissions
  Abstract 

Aim: To explore the molecular pathophysiology that might explain the epidemiologic association between cigarette smoke and age-related macular degeneration (AMD) by examining the effects of hydroquinone (HQ), a toxic compound present in high concentration in cigarette smoke-related tar, on human retinal pigment epithelial cells (ARPE-19), rat retinal neurosensory cells (R-28), and human microvascular endothelial cells (HMVEC). Materials and Methods: ARPE-19, R-28, and HMVEC were treated for 24 h with four different concentrations of HQ (500 μM, 200 μM, 100 μM, 50 μM). Cell viability, caspase-3/7 activation, DNA laddering patterns, and lactate dehydrogenase (LDH) levels were analyzed. Results: At 50 μM HQ, R-28 cells showed a significant decrease in cell viability compared with the dimethyl sulfoxide (DMSO)-treated controls. At the 100-500 μM concentrations, all three cell lines showed significant cell death (P < 0.001). In the ARPE-19, R-28, and HMVEC cultures, the caspase-3/7 activities were not increased at any of the HQ concentration. Conclusion: Our findings suggest that the mechanism of cell death in all three cell lines was through non-apoptotic pathway. In addition, neuroretinal R-28 cells were more sensitive to HQ than the ARPE-19 and HMVEC cultures.

Keywords: Apoptosis, caspase-3/7, cigarette smoke toxicant, hydroquinone


How to cite this article:
Sharma A, Patil JA, Gramajo AL, Seigel GM, Kuppermann BD, Kenney CM. Effects of hydroquinone on retinal and vascular cells in vitro. Indian J Ophthalmol 2012;60:189-93

How to cite this URL:
Sharma A, Patil JA, Gramajo AL, Seigel GM, Kuppermann BD, Kenney CM. Effects of hydroquinone on retinal and vascular cells in vitro. Indian J Ophthalmol [serial online] 2012 [cited 2024 Mar 29];60:189-93. Available from: https://journals.lww.com/ijo/pages/default.aspx/text.asp?2012/60/3/189/95869

Age-related macular degeneration (AMD) is the most common cause of registered visual handicap in the older age group in North America. [1] AMD is a degenerative disorder of the retinal pigment epithelium (RPE) and neurosensory retina, but its exact etiology is unknown. Cigarette smoke contains an abundance of potential oxidants including many of those belonging to the quinone family, which are present in the tar of cigarette smoke. Hydroquinone (HQ) is the most abundant quinine present in cigarette tar. [2],[3] HQ is found in varying amounts from 100 to 300 μg per cigarette in non-filter cigarettes. [4] Each smoked cigarette can deposit as much as 100 μg of HQ into the lungs. [5] High levels of HQ can be detected in the plasma and urine of smokers, indicating that it can enter the circulation via the lungs and can interact with cellular targets throughout the body. [3] Many studies reported hepatotoxic and nephrotoxic properties of HQ. [6],[7]

A number of clinical and epidemiological studies have shown a strong correlation between smoking and AMD. [8],[9],[10] In this study, we examined the effects of HQ at the cellular level. Although the pathogenesis of AMD includes different clinical signs, the degeneration of RPE cells is often observed at early stages of the disease with subsequent changes in neurosensory cells and vascular cells. [11] Therefore, we used human retinal pigment epithelial cells (ARPE-19), rat retinal neurosensory cells (R-28), and human microvascular endothelial cells (HMVEC) in this study.

In disease processes, many parallel pathways ultimately lead to cell death. Apoptosis refers to programmed cell death mediated by a family of cysteine proteases known as caspases. Among all caspases, activation of caspase-3/7 is a downstream event that leads to cell death. Non-apoptotic cell death can occur in many forms such as autophagy, aponecrosis or necroptosis and necrosis. [12] Our data suggest that non-apoptotic cell death may be an important mechanism by which smoking causes the onset and progression of AMD.


  Materials and Methods Top


Cell culture

Cells from the human retinal pigment epithelial line ARPE-19 were obtained (ATCC, Manassas, VA, USA) for the study. Cells were grown in a 1:1 mixture (vol/vol) of Dulbecco's Modified Eagle's Medium with Ham's F-12 nutrient medium (DMEM F-12; Gibco, Carlsbad, CA, USA), nonessential amino acids 10 mM 1×, 0.37% sodium bicarbonate, 0.058% l-glutamine, 10% fetal bovine serum, and antibiotics (penicillin G 100 U/ml, streptomycin sulfate 0.1 mg/ml, gentamicin 10 μg/ml, amphotericin B (Fungizone) 2.5 μg/ml).

R-28 cells, which are rat embryonic precursor neurosensory retinal cells, were derived from postnatal day 6 rat retina in the laboratory of one of the authors (GMS). R-28 cells express genes characteristic of neurons,[13] as well as functional neuronal and glial properties.[14] R-28 cells were cultured in Dulbecco's modified Eagle's medium, high glucose (DMEM high glucose; Invitrogen-Gibco, Grand Island, NY, USA) with 10% fetal bovine serum, 1× minimum essential medium (MEM), 10 mM 1× nonessential amino acids, 0.37% sodium bicarbonate, and 10 μg/ml gentamicin.

HMVEC and their tissue culture reagents were obtained from Cascade Biologics, Inc. (Portland, OR, USA). The cells were acquired as proliferating quaternary cultures established from cryopreserved normal human microvascular endothelial cells isolated from adult human dermis. HMVEC were grown in Medium 131 supplemented with Microvascular Growth Supplement (MVGS) to support the plating and proliferation of cells. Medium 131 not supplemented with MVGS was used as serum-free medium for HMVEC. Before use, the tissue culture surfaces were coated with Attachment Factor (AF), a sterile 1× solution containing 0.1% gelatin.

The cells were plated onto 6-well and 24-well tissue culture plates (Becton Dickinson Lab ware, Franklin Lakes, NJ, USA) at 5 × 10 5 and 1.2 10 5 cells per well for cell viability and caspase-3/7 assay, respectively, and incubated at 37°C in 5% carbon dioxide. After incubating the ARPE-19 and R-28 cells for 24 h to reach confluence, the media in the wells were replaced with the respective serum-free media containing 0.1% bovine serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO, USA). These cells were then incubated for another 24 h in these serum-free media to render them quiescent (non-proliferating). This step was omitted for HMVEC as they did not tolerate additional incubation in serum-free media for 24 h (even untreated controls had very low viability). Also, a stable (non-proliferating) population of HMVEC was achieved even without additional incubation. Thus, for the HMVEC cultures, the HQ was added without the additional 24-h incubation in serum-free media.

Exposure to hydroquinone

HQ commercially available as a powder was solubilized in dimethyl sulfoxide (DMSO). Cells were treated with 500 μM, 200 μM, 100 μM, 50 μM concentrations of HQ for 24 h. ARPE-19, R-28, HMVEC cultures were also treated with equivalent amount of DMSO as control cultures.

Cell viability assay

Cell viability assay was performed as described by Narayanan et al. [15] Briefly, cells were harvested from the 35-mm dishes by treatment with 0.2% trypsin-EDTA and then incubated at 37°C for 5 minutes. The cells were centrifuged at 1000 rpm for 5 minutes and then resuspended in 1 ml of culture medium. Automated cell viability analysis was performed (Vi Cell analyzer; Beckman Coulter Inc., Fullerton, CA, USA). The analyzer performs an automated trypan blue dye-exclusion assay and gives the percentage viability of cells.

Caspase detection

Caspase-3/7 activities were detected with the use of detection kits (Carboxyfluorescein FLICA Apoptosis Detection kits; Immunochemistry Technologies LLC, Bloomington, MN, USA). The FLICA reagent has an optimal excitation range from 488 to 492 nm and an emission range from 515 to 535 nm. Apoptosis was quantified as the level of fluorescence emitted from FLICA probes bound to caspases.

At the designated time period, the wells were rinsed briefly with fresh culture media, replaced with 300 μl/well of 1× FLICA solution in culture media, and incubated at 37°C for 1 h under 5% CO 2 . Cells were washed with phosphate-buffered saline (PBS). The following controls were included: untreated ARPE-19, R-28, HMVEC without FLICA to exclude autofluorescence from cells; untreated ARPE-19, R-28, HMVEC with FLICA for comparison of caspase activity of treated cells; tissue culture plate wells without cells with buffer alone to represent the background levels; tissue culture plate wells without cells with culture media + DMSO to exclude cross-reaction of FLICA with DMSO + culture media; ARPE-19, R-28, HMVEC with DMSO and FLICA to account for any cross-fluorescence between untreated cells and DMSO.

Quantitative calculations of caspase activities were performed with a fluorescence image scanning unit instrument (FMBIO III; Hitachi, Yokohama, Japan). The caspase activity was measured as average signal intensity of the fluorescence of the pixels in a designated spot - Mean Signal Intensity (msi).

DNA fragmentation

The QIAamp DNA Mini Kit (QIAGEN Sample and Assay Technologies, Valencia, CA, USA) was used to extract the DNA from the HQ-treated cell cultures. The Nanodrop spectrophotometer (Nanodrop Technologies, Inc., Wilmington, DE, USA) was used to determine the DNA content of each sample. For the assessment of DNA fragmentation, 2.5 μg of DNA was added to each lane of a 3% agarose gel and electrophoresed for 5 h at 80 V. The gel was stained with 5% ethidium bromide and visualized and photographed with fluorescence image scanning instrument (FMBIO III; Hitachi).

Lactate dehydrogenase cytotoxicity assay

The LDH Cytotoxicity Assay kit II (BioVision, Inc., Mountain View, CA, USA) was used to measure the lactate dehydrogenase (LDH) enzyme released from the cells as an index of necrosis or nonapoptotic cell death. The assay was performed as per the manufacturer's protocol. LDH Cytotoxicity Assay kit II utilizes the water soluble tetrazolium salt (WST) reagent for detection of LDH released from the damaged cells. The assay uses an enzyme coupling reaction; LDH oxidizes lactate to generate NADH which then reacts with WST to generate a yellow color. LDH activity was then quantified with a spectrophotometer (Perkin Elmer, Inc., IL) at 450 nm optical density (OD). The data presented were from three different sets of experiments. Each concentration was performed in triplicate and data were plotted according to manufacturer's protocol.

Statistical analysis

Data were subjected to statistical analysis by analysis of variance (ANOVA) (Prism, ver. 3.0; GraphPad Software Inc., San Diego, CA, USA). Newman-Keuls multiple-comparison test was done to compare the data within each experiment. P < 0.05 was considered statistically significant. Error bars in the graphs represent Standard Error of Mean (SEM) with experiments performed in triplicate.


  Results Top


Cell viability studies [Figure 1]

ARPE-19 cells showed a significant decrease in cell viability after exposure to HQ for 24 h. Untreated and DMSO-treated equivalent cultures of 500 μM showed cell viabilities of 96.10 ± 1.84% and 96.25 ± 0.78%, respectively. Cell viabilities were 26.60 ± 1.56% (P < 0.001), 33.50 ± 3.53% (P < 0.001) and 52.95 ± 2.05% (P < 0.001) at doses of 500 μM, 200 μM, and 100 μM HQ, respectively. At the lower concentrations of 50 μM HQ, cell viability was 95.70 ± 0.42 (P > 0.05).
Figure 1: Cell viability of cultured cells (ARPE-19, R-28, HMVEC) following HQ treatment for 24 h. Representative control and HQ-treated samples are presented for each cell line. DMSO: Dimethyl sulfoxide. ***Statistically significant (P < 0.001); **statistically significant (P < 0.01)

Click here to view


R-28 cells showed a significant decrease in cell viability after exposure to HQ for 24 h. Untreated and DMSO-treated equivalent culture of 500 μM showed cell viabilities of 81.050 ± 6.43% and 78.56 ± 2.90%, respectively. Cell viabilities were 14.15 ± 1.20% (P < 0.001), 26.20 ± 1.13% (P < 0.001), and 35.70 ± 3.25% (P < 0.001) at doses of 500 μM, 200 μM, and 100 μM HQ, respectively. At the lower concentrations of 50 μM HQ, cell viability was 67.25 ± 2.89% (P < 0.01).

HMVEC cultures showed a significant decrease in cell viability after exposure to HQ for 24 h. Untreated cell culture showed cell viability of 84.00 ± 3.59%. DMSO-treated equivalent culture of 500 μM and 200 μM showed cell viabilities of 55.37 ± 3.76% and 87.50 ± 2.19%, respectively. Cell viabilities were 11.73 ± 2.27% (P < 0.001), 25.93 ± 2.17% (P < 0.001), and 37.52 ± 1.93% (P < 0.001) at doses of 500 μM, 200 μM, and 100 μM HQ, respectively. At the lower concentrations of 50 μM HQ, cell viability was 84.20 ± 6.78% (P > 0.05).

Caspase-3/7 activity [Figure 2]

ARPE-19 cells treated with 500 μM, 200 μM, 100 μM, and 50 μM of HQ showed msi of 6132.27 ± 1011.5 (P > 0.05), 5733.83 ± 1014.3 (P > 0.05), 6721.74 ± 901.6 (P > 0.05), and 6015.19 ± 208.6 (P > 0.05), respectively. Values for untreated cells and DMSO-equivalent cultures 500 μM of HQ were 5861.70 ± 220.7 and 4820.83 ± 83.3, respectively.

R-28 cells treated with 500 μM, 200 μM, 100 μM, and 50 μM of HQ showed msi of 6514.40 ± 692.1 (P > 0.05), 7074.35 ± 1357.8 (P > 0.05), 6777.15 ± 1253.2 (P > 0.05), and 5280.05 ± 1008.4 (P > 0.05), respectively. Values for untreated cells and DMSO-equivalent cultures 500 μM of HQ were 3580.00 ± 595.3 and 5783.90 ± 1073.5, respectively.

HMVEC cultures cells treated with 500 μM, 200 μM, 100 μM, and 50 μM of HQ showed msi of 4762.00 ± 1153.7 (P > 0.05), 4831.33 ± 1001.4 (P > 0.05), 3813.40 ± 1339.8 (P > 0.05), and 4887.91 ± 1098.3 (P > 0.05), respectively. Values for untreated cells and DMSO-equivalent cultures 500 μM of HQ were 5262.45 ± 793.0 and 4376.02 ± 709.4, respectively.
Figure 2: All three cell lines (ARPE-19, R-28, HMVEC) did not show increase in caspase-3/7 activity following 24-h exposure of HQ. Mean signal intensity (msi) is presented for representative control and HQ-treated samples

Click here to view


DNA fragmentation [Figure 3]

None of the cell lines showed any 200 bp DNA fragmentation pattern on 3% agarose gels.
Figure 3: Lack of DNA fragmentation following HQ treatment of cultured cells. Representative control and HQ-treated samples are presented along with molecular weight markers. The electrophoretic patterns are consistent with non-apoptotic cell death. A, ARPE-19 cells; B, R-28 cells; C, HMVEC cultures

Click here to view


Lactate dehydrogenase release assay [Figure 4]

ARPE-19 cells showed an increase in LDH levels after exposure to HQ for 24 h. Untreated and DMSO-treated equivalent culture of 500 μM showed LDH levels of 18.36 ± 1.37% and 18.83 ± 1.74%, respectively. LDH values were 53.56 ± 2.61% (P < 0.001), 48.30 ± 7.25% (P < 0.001), and 41.13 ± 2.05% (P < 0.001) at doses of 500 μM, 200 μM, and 100 μM HQ, respectively. At the lower concentrations of 50 μM HQ, the LDH value was 19.76 ± 4.35% (P > 0.05).
Figure 4: LDH release from the cultured cells (ARPE-19, R-28, HMVEC) following HQ treatment for 24 h. Representative control and HQ-treated samples are presented for each cell line. DMSO: Dimethyl sulfoxide. ***Statistically significant (P < 0.001); **statistically significant (P < 0.01)

Click here to view


R-28 cells showed an increase in LDH value after exposure to HQ for 24 h. Untreated and DMSO-treated equivalent culture of 500 μM showed LDH levels of 20.36 ± 2.12% and 18.46 ± 3.73%, respectively. LDH values were 53.23 ± 6.10% (P < 0.001), 46.63 ± 8.76% (P < 0.001), 44.09 ± 5.29% (P < 0.001), and 41.96 ± 2.82% (P > 0.001) at doses of 500 μM, 200 μM, 100 μM, and 50 μM HQ, respectively.

HMVEC cultures showed an increase in LDH value after exposure to HQ for 24 h. Untreated and DMSO-treated equivalent culture of 500 μM showed cell viabilities of 20.37 ± 2.12% and 18.47 ± 3.73%, respectively. LDH values were 45.26 ± 6.83% (P < 0.001), 42.30 ± 5.25% (P < 0.001), and 37.16 ± 1.90% (P < 0.001) at doses of 500 μM, 200 μM, and 100 μM HQ, respectively. At the lower concentrations of 50 μM HQ, the LDH value was 17.63 ± 4.23% (P > 0.05).


  Discussion Top


The present study demonstrated that after 24-h treatment with HQ, the ARPE-19 cells showed no loss of cell viability at 50 μM HQ but exhibited significant cell loss at doses greater than 100 μM. This agrees with the report of Chen et al. who found necrotic cell death of bone marrow mononuclear cells at concentrations above 50 μM. [16] Our findings differ from those of Strunnikova et al. who found no loss of RPE cell viability at 100 μM HQ after 16 h of incubation. [17] However, our results are similar to those of Marin-Castaño et al. who found RPE cell damage at 250-400 μM HQ. [18] A recent study showed the formation of sub-RPE deposits and diffuse thickening of Bruch's membrane in mice after exposing them to cigarette smoke or HQ. [19] This is significant because histochemical studies reported the presence of extracellular protein and/or lipid deposits (drusen) between the basal lamina of the RPE cells and the inner layer of the Bruch's membrane carries an increased risk of progressing to an advanced form of AMD, either geographic atrophy (dry AMD) or choroidal neovascularization (wet AMD). [20] Cigarette smoke contains many toxicants, including acrolein that damages mitochondrial function. [21] It is becoming apparent that different cigarette smoke components may have different mechanisms of action on the human RPE cells. In a recent study, we have found elevation of caspase-3/7, caspase-8, caspase-9, caspase-12 activities in ARPE-19 cells in vitro with benzo(e)pyrene (B(e)P), a polycyclic aromatic hydrocarbon (PAH) present in cigarette smoke, [22] while HQ did not elevate caspase-3/7 activity in this study.

R-28 cells had significant loss of cell viability at 50 μM HQ in addition to the higher doses (100 μM, 200 μM, 500 μM), indicating that the R-28 cells were more sensitive to HQ than the ARPE-19 cells. This increased sensitivity to chemicals by R-28 cells has also been reported in cultures treated with 7-ketocholesterol [23] and trypan blue. [15] Our findings are consistent with those of Haenen et al. who found loss of cell viability and LDH release in renal proximal tubular cells after 250 μM and 500 μM HQ treatment. [24] Our findings differ from those of Terasaka el al. who reported caspase-3 and caspase-9 activation at 50 μM HQ in HL60 cells after 6 h of incubation. [25] Photoreceptor inner segments have a high content of mitochondria and unsaturated fatty acids, which makes these cells potential targets of oxidative injury (i.e. blue light, HQ) via apoptotic or non-apoptotic pathways. [26]

HMVEC cultures showed significant loss of cell viability at HQ doses 100 μM, 200 μM, and 500 μM, but not at the lower dose of 50 μM HQ. Smith et al. found loss of cell viability in a dose-dependent manner starting from 2 μM HQ in human CD34-positive blood progenitor cells. [27] Hiraku et al. reported necrotic cell death at 100 μM HQ and higher concentrations. [28] These findings differ from those of Dong-Xiao Shen et al. who found apoptotic cell death at 100 μM HQ in human embryonic kidney cells (HEK293). [29] Although RPE is the primary target of HQ, [19] it can affect other cells in the outer retina, such as photoreceptor cells and choriocapillaries endothelium. Sub-RPE deposit formation could be the result of an initial insult to the endothelium, [30] which could contribute to the formation of sub-RPE deposits.

We realize that there are some limitations of this study. The HQ concentrations used cannot be extrapolated directly to clinical practice, as this study was performed in vitro. In addition, the level of HQ in the retina of smokers is unknown. However, there are 40% higher levels of HQ in smoker's blood compared to that of non-smoker. [31] Therefore, it is not unreasonable to expect that the retina and RPE cells are exposed to higher HQ levels in heavy smokers. Another drawback of our study is that the cell cultures were still capable of some proliferation, which is different from the normal clinical condition and may limit the interpretation of the results. However, we believe the data presented are significant in light of the present clinical treatment approaches of AMD.

To the best of our knowledge, this is the first study showing non-apoptotic damage in all three cell types representative of the retina after exposure to the cigarette smoke toxicant, HQ. Understanding the AMD pathogenesis could be helpful for drug development targeting the specific pathways involved. As different groups of compounds have different mechanisms of cell death, to protect the cells from these noxious effects, we need to develop a treatment that can antagonize a variety of pathways. Furthermore, it demonstrates that the ARPE-19, R-28, and HMVEC culture systems can be used to generate information of the biochemical mechanisms of chemical toxicants and protective agents.

 
  References Top

1.
Evans J, Wormald R. Is the incidence of registrable age-related macular degeneration increasing? Br J Ophthalmol 1996;80:9-14.  Back to cited text no. 1
    
2.
Pryor WA. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ Health Perspect 1997;105:875-82.  Back to cited text no. 2
    
3.
Lenaz G. Quinone specificity of complex I. Biochim Biophys Acta 1998;1364:207-21.  Back to cited text no. 3
    
4.
World-Health-Orangization, Geneva. IPCS International programme on chemical safety. Health and safety guide No. 101. Hydroquinone and safety guide, 1996;2.2.   Back to cited text no. 4
    
5.
Pyatt DW, Stillman WS, Irons RD. Hydroquinone, a reactive metabolite of benzene, inhibits NF-kappa B in primary human CD4+ T lymphocytes. Toxicol Appl Pharmacol 1998;149:178-84.  Back to cited text no. 5
    
6.
Moridani MY, Cheon SS, Khan S, O'Brien PJ. Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes. Chem Biol Interact 2003;142:317-33.  Back to cited text no. 6
    
7.
Lau SS, Monks TJ, Everitt JI, Kleymenova E, Walker CL. Carcinogenicity of a nephrotoxic metabolite of the "nongenotoxic" carcinogen hydroquinone. Chem Res Toxicol 2001;14:25-33.  Back to cited text no. 7
    
8.
Klein R, Klein BE, Linton KL, DeMets DL. The Beaver Dam Eye Study: The relation of age-related maculopathy to smoking. Am J Epidemiol 1993;137:190-200.  Back to cited text no. 8
    
9.
Vingerling JR, Hofman A, Grobbee DE, de Jong PT. Age-related macular degeneration and smoking. The Rotterdam Study. Arch Ophthalmol 1996;114:1193-6.  Back to cited text no. 9
    
10.
Smith W, Mitchell P, Leeder SR. Smoking and age-related maculopathy. The Blue Mountains Eye Study. Arch Ophthalmol 1996;114:1518-23.  Back to cited text no. 10
    
11.
Young RW. Pathophysiology of age-related macular degeneration. Surv Ophthalmol 1987;31:291-306.  Back to cited text no. 11
    
12.
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009;16:3-11.  Back to cited text no. 12
    
13.
Seigel GM, Mutchler AL, Imperato EL. Expression of glial markers in a retinal precursor cell line. Mol Vis 1996;2:2.  Back to cited text no. 13
    
14.
Sun W, Seigel GM, Salvi RJ. Retinal precursor cells express functional ionotropic glutamate and GABA receptors. Neuroreport 2002;13:2421-4.  Back to cited text no. 14
    
15.
Narayanan R, Kenney MC, Kamjoo S, Trinh TH, Seigel GM, Resende GP, et al. Trypan blue: Effect on retinal pigment epithelial and neurosensory retinal cells. Invest Ophthalmol Vis Sci 2005;46:304-9.  Back to cited text no. 15
    
16.
Chen Y, Yu K, Wu JB, Shen ZJ, Jiang SF, Hu XD, et al. Apoptosis induced by hydroquinone in bone marrow mononuclear cells in vitro. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2004;22:161-4.  Back to cited text no. 16
    
17.
Strunnikova N, Zhang C, Teichberg D, Cousins SW, Baffi J, Becker KG, et al. Survival of retinal pigment epithelium after exposure to prolonged oxidative injury: A detailed gene expression and cellular analysis. Invest Ophthalmol Vis Sci 2004;45:3767-77.  Back to cited text no. 17
    
18.
Marin-Castaño ME, Striker GE, Alcazar O, Catanuto P, Espinosa-Heidmann DG, Cousins SW. Repetitive nonlethal oxidant injury to retinal pigment epithelium decreased extracellular matrix turnover in vitro and induced sub-RPE deposits in vivo. Invest Ophthalmol Vis Sci 2006;47:4098-112.  Back to cited text no. 18
    
19.
Espinosa-Heidmann DG, Suner IJ, Catanuto P, Hernandez EP, Marin-Castano ME, Cousins SW. Cigarette smoke-related oxidants and the development of sub-RPE deposits in an experimental animal model of dry AMD. Invest Ophthalmol Vis Sci 2006;47:729-37.  Back to cited text no. 19
    
20.
Van Leeuwen R, Klaver CC, Vingerling JR, Hofman A, de Jong PT. The risk and natural course of age-related maculopathy: Follow-up at 6 1/2 years in the Rotterdam study. Arch Ophthalmol 2003;121:519-26.  Back to cited text no. 20
    
21.
Jia L, Liu Z, Sun L, Miller SS, Ames BN, Cotman CW, et al. Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: Protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci 2007;48:339-48.  Back to cited text no. 21
    
22.
Sharma A, Neekhra A, Gramajo AL, Patil J, Chwa M, Kuppermann BD, et al. Effects of Benzo(e)Pyrene, a toxic component of cigarette smoke, on human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci 2008;49:5111-7.  Back to cited text no. 22
    
23.
Neekhra A, Luthra S, Chwa M, Seigel G, Gramajo AL, Kuppermann BD, et al. Caspase-8, -12, and -3 activation by 7-ketocholesterol in retinal neurosensory cells. Invest Ophthalmol Vis Sci 2007;48:1362-7.  Back to cited text no. 23
    
24.
Haenen HE, Bleijlevens E, Elzerman H, Temmink JH, Koeman JH, Van Bladeren PJ. Cytotoxicity of 2-tert-butyl hydroquinone glutathione conjugates after apical and basolateral exposure of rat renal proximal tubular cell monolayers. Toxicol in vitro 1996;10:141-8.  Back to cited text no. 24
    
25.
Terasaka H, Morshed SR, Hashimoto K, Sakagami H, Fujisawa S. Hydroquinone-induced apoptosis in HL-60 cells. Anticancer Res 2005;25:161-70.  Back to cited text no. 25
    
26.
Beatty S, Koh H, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000;45:115-34.  Back to cited text no. 26
    
27.
Smith CJ, Hansch C. The relative toxicity of compounds in mainstream cigarette smoke condensate. Food Chem Toxicol 2000;38:637-46.   Back to cited text no. 27
    
28.
Hiraku Y, Kawanishi S. Oxidative DNA damage and apoptosis induced by benzene metabolites. Cancer Res 1996;56: 5172-8.  Back to cited text no. 28
    
29.
Shen DX, Shi X, Fu JL, Zhang YM, Zhou ZC. The role of thiol reduction in hydroquinone-induced apoptosis in HEK293 cells. Chem Biol Interact 2003;145:225-33.  Back to cited text no. 29
    
30.
Gottsch JD, Bynoe LA, Harlan JB, Rencs EV, Green WR. Light-induced deposits in Bruch's membrane of protoporphyric mice. Arch Ophthalmol 1993;111:126-9.  Back to cited text no. 30
    
31.
Kim YG, Baricuatro JH, Soriaga MP. Molecular adsorption at well-defined electrode surfaces: Hydroquinone on Pd(111) studied by EC-STM. Langmuir 2006;22:10762-5.  Back to cited text no. 31
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]


This article has been cited by
1 Cardiolipin-mediated temporal response to hydroquinone toxicity in human retinal pigmented epithelial cell line
Magdalena Davidescu, Letizia Mezzasoma, Katia Fettucciari, Luisa Pascucci, Marilena Pariano, Alessandro Di Michele, Oxana Bereshchenko, Carlo Cagini, Barbara Cellini, Lanfranco Corazzi, Ilaria Bellezza, Lara Macchioni
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2023; : 119554
[Pubmed] | [DOI]
2 Alteration in Melanin Content in Retinal Pigment Epithelial Cells upon Hydroquinone Exposure
Takeyuki Nishiyama, Hiroki Tsujinaka, Tetsuo Ueda, Nahoko Ogata
International Journal of Molecular Sciences. 2023; 24(23): 16801
[Pubmed] | [DOI]
3 Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells
Niina Harju
Acta Ophthalmologica. 2022; 100(S273): 3
[Pubmed] | [DOI]
4 Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Age Related Macular Degeneration, Role in Pathophysiology, and Possible New Therapeutic Strategies
Valentina Bilbao-Malavé, Jorge González-Zamora, Miriam de la Puente, Sergio Recalde, Patricia Fernandez-Robredo, María Hernandez, Alfredo Garcia Layana, Manuel Saenz de Viteri
Antioxidants. 2021; 10(8): 1170
[Pubmed] | [DOI]
5 Resvega Alleviates Hydroquinone-Induced Oxidative Stress in ARPE-19 Cells
Niina Bhattarai, Eveliina Korhonen, Maija Toppila, Ali Koskela, Kai Kaarniranta, Yashavanthi Mysore, Anu Kauppinen
International Journal of Molecular Sciences. 2020; 21(6): 2066
[Pubmed] | [DOI]
6 Resveratrol Protects Against Hydroquinone-Induced Oxidative Threat in Retinal Pigment Epithelial Cells
Samantha E. Neal, Kristen L. Buehne, Nicholas A. Besley, Ping Yang, Peter Silinski, Jiyong Hong, Ian T. Ryde, Joel N. Meyer, Glenn J. Jaffe
Investigative Opthalmology & Visual Science. 2020; 61(4): 32
[Pubmed] | [DOI]
7 Antiplatelet, antioxidative, and anti-inflammatory effects of hydroquinone
Mei-Chi Chang, Bei-En Chang, Yu-Hwa Pan, Bor-Ru Lin, Yun-Chia Lian, Ming-Shu Lee, Sin-Yuet Yeung, Li-Deh Lin, Jiiang-Huei Jeng
Journal of Cellular Physiology. 2019; 234(10): 18123
[Pubmed] | [DOI]
8 Statins decrease vascular epithelial growth factor expression via down-regulation of receptor for advanced glycation end-products
Hiroki Tsujinaka, Asako Itaya-Hironaka, Akiyo Yamauchi, Sumiyo Sakuramoto-Tsuchida, Ryogo Shobatake, Mai Makino, Naonori Masuda, Hiromasa Hirai, Shin Takasawa, Nahoko Ogata
Heliyon. 2017; 3(9): e00401
[Pubmed] | [DOI]
9 Adverse Outcomes Associated with Cigarette Smoke Radicals Related to Damage to Protein-disulfide Isomerase
Harshavardhan Kenche, Zhi-Wei Ye, Kokilavani Vedagiri, Dylan M. Richards, Xing-Huang Gao, Kenneth D. Tew, Danyelle M. Townsend, Anna Blumental-Perry
Journal of Biological Chemistry. 2016; 291(9): 4763
[Pubmed] | [DOI]
10 Effects of light on retinal pigment epithelial cells, neurosensory retinal cells and Müller cells treated with Brilliant Blue G
Saffar Mansoor, Ashish Sharma, Javier Cáceres-del-Carpio, Leandro C Zacharias, A Jayaprakash Patil, Navin Gupta, G Astrid Limb, M Cristina Kenney, Baruch D Kuppermann
Clinical & Experimental Ophthalmology. 2015; 43(9): 820
[Pubmed] | [DOI]
11 2-ethylpyridine, a cigarette smoke component, causes mitochondrial damage in human retinal pigment epithelial cells in vitro
Mansoor, S., Gupta, N., Falatoonzadeh, P., Kuppermann, B.D., Kenney, M.C.
Indian Journal of Ophthalmology. 2014; 62(1): 16-22
[Pubmed]
12 Smoking and age-related macular degeneration: Review and update
Velilla, S., García-Medina, J.J., García-Layana, A.,Díaz-Llopis, M., Gallego-Pinazo, R.
Journal of Ophthalmology. 2013; 2013
[Pubmed]
13 Genotoxicity of hydroquinone in A549 cells
Cheng Peng,Dionne Arthur,Faye Liu,Jongwha Lee,Qing Xia,Martin F Lavin,Jack C. Ng
Cell Biology and Toxicology. 2013; 29(4): 213
[Pubmed] | [DOI]
14 Smoking and Age-Related Macular Degeneration: Review and Update
Sara Velilla,José Javier García-Medina,Alfredo García-Layana,Rosa Dolz-Marco,Sheila Pons-Vázquez,M. Dolores Pinazo-Durán,Francisco Gómez-Ulla,J. Fernando Arévalo,Manuel Díaz-Llopis,Roberto Gallego-Pinazo
Journal of Ophthalmology. 2013; 2013: 1
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Materials and Me...
Results
Discussion
References
Article Figures

 Article Access Statistics
    Viewed4633    
    Printed86    
    Emailed2    
    PDF Downloaded250    
    Comments [Add]    
    Cited by others 14    

Recommend this journal