Glyxambi
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 229
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2013  |  Volume : 61  |  Issue : 12  |  Page : 705-710

Effect of bevacizumab (Avastin TM ) on mitochondrial function of in vitro retinal pigment epithelial, neurosensory retinal and microvascular endothelial cells


1 Department of Ophthalmology, University of California, Irvine, California, USA; Department of Ophthalmology, Drishti Eye Centre, Dehradun, India
2 Department of Ophthalmology, University of California, Irvine, California, USA; Department of Vitreoretina, Lotus Eye Care Hospital, Coimbatore, TN, India
3 Department of Ophthalmology, University of California, Irvine, California, USA
4 Department of Ophthalmology, University of California, Irvine, California, USA; Department of Ophthalmology & Visual Sciences, University of Wisconsin, Madison, Wisconsin, USA
5 Department of Ophthalmology, University of California, Irvine, California, USA; Departamento de Oftalmologia, Centro de Ojos Romagosa- Fundacion VER, Cordoba, Argentina
6 University at Buffalo, Center for Hearing and Deafness, Buffalo, New York, USA

Correspondence Address:
Baruch D Kuppermann
Department of Ophthalmology, 125 Medical Surge I, University of California Irvine, Irvine, California 92697-4375, US

Login to access the Email id

Source of Support: Supported by the Discovery Eye Foundation, Iris and B. Gerald Cantor Foundation, Henry L Guenther Foundation, Gilbert Foundation, Ko Family Foundation, Research To Prevent Blindness, Pan-American Association of Ophthalmology Foundation (David and Julianna Pyott Pan-American - Retinal Research Fellowship)., Conflict of Interest: None


DOI: 10.4103/0301-4738.124750

Rights and Permissions

Purpose: To evaluate the effect of bevacizumab on the mitochondrial function of human retinal pigment epithelial (ARPE-19), rat neurosensory retinal (R28) and human microvascular endothelial (HMVEC) cells in culture. Materials and Methods: ARPE-19 and R28 cells were treated with 0.125, 0.25, 0.50 and 1 mg/ml of bevacizumab. The HMVEC cultures were treated with 0.125, 0.25, 0.50 and 1 mg/ml of bevacizumab or 1 mg/ml of immunoglobulin G (control). Mitochondrial function assessed by mitochondrial dehydrogenase activity (MDA) was determined using the WST-1 assay. Results: Bevacizumab doses of 0.125 to 1 mg/ml for 5 days did not significantly affect the MDA of ARPE-19 cells. Bevacizumab treatment at 0.125 and 0.25 mg/ml (clinical dose) did not significantly affect the MDA of R28 cells; however, 0.50 and 1 mg/ml doses significantly reduced the R28 cell mitochondrial function. All doses of bevacizumab significantly reduced the MDA of proliferating and non-proliferating HMVEC. Conclusion: Bevacizumab exposure for 5 days was safe at clinical doses in both ARPE-19 and R28 retinal neurosensory cells in culture. By contrast, bevacizumab exposure at all doses show a significant dose-dependent decrease in mitochondrial activity in both the proliferating and non-proliferating HMVEC in vitro. This suggests a selective action of bevacizumab on endothelial cells at clinical doses.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1243    
    Printed35    
    Emailed3    
    PDF Downloaded153    
    Comments [Add]    
    Cited by others 1    

Recommend this journal