Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 4485
  • Home
  • Print this page
  • Email this page
SYMPOSIUM - TRIP
Year : 2014  |  Volume : 62  |  Issue : 1  |  Page : 41-49

The KIDROP model of combining strategies for providing retinopathy of prematurity screening in underserved areas in India using wide-field imaging, tele-medicine, non-physician graders and smart phone reporting


1 Narayana Nethralaya Postgraduate Institute of Ophthalmology, Bangalore, India
2 London School of Hygiene and Tropical Medicine, London, United Kingdom
3 Advanced Eye Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
4 Indian Institute of Management, Bangalore, India
5 Maastricht University Medical Center, Maastricht, Netherlands

Correspondence Address:
Anand Vinekar
Department of Pediatric Retina, KIDROP- Program Director, Narayana Nethralaya Postgraduate Institute of Ophthalmology, 121/C, 1st R Block, Rajajinagar, Bangalore - 560 010, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0301-4738.126178

Rights and Permissions

Aim: To report the Karnataka Internet Assisted Diagnosis of Retinopathy of Prematurity (KIDROP) program for retinopathy of prematurity (ROP) screening in underserved rural areas using an indigenously developed tele-ROP model. Materials and Methods: KIDROP currently provides ROP screening and treatment services in three zones and 81 neonatal units in Karnataka, India. Technicians were trained to use a portable Retcam Shuttle (Clarity, USA) and validated against ROP experts performing indirect ophthalmoscopy. An indigenously developed 20-point score (STAT score) graded their ability (Level I to III) to image and decide follow-up based on a three-way algorithm. Images were also uploaded on a secure tele-ROP platform and accessed and reported by remote experts on their smart phones (iPhone, Apple). Results: 6339 imaging sessions of 1601 infants were analyzed. A level III technician agreed with 94.3% of all expert decisions. The sensitivity, specificity, positive predictive value and negative predictive value for treatment grade disease were 95.7, 93.2, 81.5 and 98.6 respectively. The kappa for technicians to decide discharge of babies was 0.94 (P < 0.001). Only 0.4% of infants needing treatment were missed.The kappa agreement of experts reporting on the iPhone vs Retcam for treatment requiring and mild ROP were 0.96 and 0.94 (P < 0.001) respectively. Conclusions: This is the first and largest real-world program to employ accredited non-physicians to grade and report ROP. The KIDROP tele-ROP model demonstrates that ROP services can be delivered to the outreach despite lack of specialists and may be useful in other middle-income countries with similar demographics.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed6166    
    Printed52    
    Emailed0    
    PDF Downloaded525    
    Comments [Add]    
    Cited by others 6    

Recommend this journal