Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 3863
  • Home
  • Print this page
  • Email this page
SYMPOSIUM - TRIP
Year : 2014  |  Volume : 62  |  Issue : 1  |  Page : 66-73

Differential systemic gene expression profile in patients with diabetic macular edema: Responders versus nonresponders to standard treatment


1 Department of Retina, Narayana Nethralaya, Bangalore, Karnataka, India
2 Stem Cell Research Laboratory, Narayana Nethralaya, Bangalore, Karnataka, India
3 Department of Genetics, Narayana Nethralaya, Bangalore, Karnataka, India
4 University Eye Clinic, Maastricht University Medical Centre, The Netherlands

Correspondence Address:
Supriya S Dabir
Narayana Nethralaya, Plot No 121/C, 1st R Block, Rajajinagar, Bangalore - 560 010, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0301-4738.126186

Rights and Permissions

Introduction: Diabetic macular edema (DME) is a vision-threatening complication of diabetic retinopathy. The current practice of management is a" trial and error "method of using intravitreal antivascular endothelial growth factor (VEGF)'' or steroids to treat the patient and watch the response. However, if the patient's genetic profile helps us choose appropriate medicine, it would help customize treatment option for each patient. This forms the basis of our study. Materials and Methods: A case-control, prospective, observational series, where DME patients were treated with bevacizumab and subclassified as treatment naοve, treatment responders, and treatment nonresponders. Blood samples of 20 subjects were studied, with five patients in each of the groups (nondiabetic- group 1, treatment naοve- group 2, treatment responder- group 3, and treatment nonresponder-group 4). Whole blood RNA extraction followed by labeling, amplification and hybridization was done, and microarray data analyzed. Genes were classified based on functional category and pathways. Results: The total number of genes upregulated among all three experimental groups was 5, whereas 105 genes were downregulated. There were no common genes upregulated between the responders and nonresponders. There was only one gene upregulated between the diabetic and diabetic responders posttreatment. There were 19 genes upregulated and 8 genes downregulated in the inflammatory pathway in group 2 versus group 1. There were no downregulated genes detected in vascular angiogenesis and transcription group. There were identical numbers of genes up- and downregulated in the inflammatory pathway. Seventeen genes were upreguated and 11 genes downregulated in receptor activity, which remained the predominant group in the group classification. Discussion: In summary, this study would provide an insight into the probable signaling mechanisms for disease pathogenesis as well as progression. This type of study eventually would aid in developing or improvising existing treatment modules with a rational approach towards personalized medicine, in future addressing the differential responses to treatment.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2211    
    Printed56    
    Emailed0    
    PDF Downloaded305    
    Comments [Add]    
    Cited by others 1    

Recommend this journal