Glyxambi
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 1859
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2014  |  Volume : 62  |  Issue : 2  |  Page : 196-203

Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity


1 School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pinang, Malaysia
2 Department of Botany, Faculty of Sciences, Assiut University, Assiut, Egypt
3 Department of Ophthalmology, Faculty of Medicine, Assiut University, Assiut, Egypt

Correspondence Address:
Abdullah A Gharamah
School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pinang
Malaysia
Login to access the Email id

Source of Support: The research is funded by assuit research university, Conflict of Interest: None


DOI: 10.4103/0301-4738.116463

Rights and Permissions

Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2), sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin). Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1441    
    Printed9    
    Emailed0    
    PDF Downloaded184    
    Comments [Add]    
    Cited by others 2    

Recommend this journal