• Users Online: 95073
  • Home
  • Print this page
  • Email this page

   Table of Contents      
BRIEF COMMUNICATION
Year : 2015  |  Volume : 63  |  Issue : 9  |  Page : 743-745

The effect of phacoemulsification surgery on intraocular pressure and anterior segment anatomy of the patients with cataract and ocular hypertension


1 Department of Ophthalmology, Ophthalmology Clinics, Turkish Red Crescent Hospital, Konya, Turkey
2 Department of Ophthalmology, Faculty of Medicine, Mevlana University, Konya, Turkey
3 Konya Eye Centre, Konya, Turkey
4 Department of Ophthalmology, Ataturk Training and Research Hospital, Ankara, Turkey
5 Department of Ophthalmology, Konya Training and Research Hospital, Konya, Turkey

Date of Submission29-Jan-2015
Date of Acceptance31-Oct-2015
Date of Web Publication3-Dec-2015

Correspondence Address:
Dr. Servet Cetinkaya
Ophthalmology Clinics, Turkish Red Crescent Hospital (Kizilay Hastanesi), Sukran Mh., Taskapu Medrese Sok. No: 15, Meram, 42200, Konya
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0301-4738.171020

Rights and Permissions
  Abstract 

We evaluated the effect of phacoemulsification surgery on intraocular pressure (IOP), anterior chamber depth (ACD), iridocorneal angle (ICA), and central corneal thickness (CCT) of the patients with cataract and ocular hypertension. The decrease in IO P values of the 1 st week, 1 st month, 3 rd month, 6 th month, and 1 st year was statistically significant, but that of the 2 nd year was not significant. The increase in ACD and ICA values of the 1 st week, 1 st month, 3 rd month, 6 th month, and 1 st year was statistically significant, but that of the 2 nd year was not significant. The increase in CCT values of 1 st week and 1 st month was statistically significant, but those of 3 rd month, 6 th month, 1 st year, and 2 nd year were not significant. In conclusion, phacoemulsification surgery decreases IOP and increases ACD and ICA in the short-term. However, in the long-term it does not cause any significant changes.

Keywords: Cataract, intraocular pressure, ocular hypertension, phacoemulsification


How to cite this article:
Cetinkaya S, Dadaci Z, Yener HI, Acir NO, Cetinkaya YF, Saglam F. The effect of phacoemulsification surgery on intraocular pressure and anterior segment anatomy of the patients with cataract and ocular hypertension. Indian J Ophthalmol 2015;63:743-5

How to cite this URL:
Cetinkaya S, Dadaci Z, Yener HI, Acir NO, Cetinkaya YF, Saglam F. The effect of phacoemulsification surgery on intraocular pressure and anterior segment anatomy of the patients with cataract and ocular hypertension. Indian J Ophthalmol [serial online] 2015 [cited 2024 Mar 29];63:743-5. Available from: https://journals.lww.com/ijo/pages/default.aspx/text.asp?2015/63/9/743/171020

Modern cataract surgery results in a reduction in intraocular pressure (IOP) in eyes with or without glaucoma, and/or ocular hypertension (OHT).[1],[2] As a result of extraction of the natural lens and implantation of the ıntraocular lens (IOL) which is thinner than natural lens, the depth and volume of anterior chamber increases, the angle between cornea and iris widens and the iris moves backward.[3] At the same time, endogenous prostaglandin F2 secretion, an inflammatory mediator, increases due to surgical trauma, causing an increase in uveoscleral outflow of aqueous humor. Cataract surgery leads to fibrosis and contraction of the posterior capsule causing traction on the ciliary body, thus reduction in secretion of aqueous humor and increase in outflow.[4] In addition, postoperative corneal edema increases corneal thickness leading to erroneously higher measurements of IOP. Hence, the real IOP level may be lower than the observed value. All these causes may be influential on the reduction of IOP after cataract extraction. The aim of this study is to evaluate the changes in IOP, anterior chamber depth (ACD), iridocorneal angle (ICA), and central corneal thickness (CCT) in patients with cataract and OHT after phacoemulsification and IOL implantation surgery.


  Materials and Methods Top


The study protocol was approved by the Local Ethics Committee. An informed consent was obtained from the patients for the cataract surgery. The study was carried out according to the tenets of the Declaration of Helsinki.

One hundred and twelve eyes of 112 patients with cataract and OHT (60 males, 52 females) who were operated between January 2010 and November 2011 were evaluated retrospectively. Their mean age was 61.32 ± 11.12 (standard deviation [SD]) (45–88) years. Full ophthalmological examinations including uncorrected visual acuity, best corrected visual acuity (BCVA), IOP measurements, ACD, ICA, and CCT measurements, slit-lamp biomicroscopy, and fundus examination, were performed preoperatively and postoperatively. IOP measurements were made with Goldmann Applanation Tonometer (Haag-Streit, Switzerland), ACD with IOL Master optical biometer (Zeiss, Germany), ICA with Goldmann 3-mirror lens (Haag-Streit, Switzerland) and CCT was measured with Ultrasonic Pachymeter (Meda, USA).

The IOP levels of the patients were higher than normal, but they had no visual field defects and neither used any antiglaucomatous medications, that’s why classified as OHT. The cases with primary open angle glaucoma, acute or chronic primary angle closure glaucoma (ACG), pseudoexfoliation (PEX) syndrome, pigmentary dispersion syndrome, history of ocular surgery, and intraoperative and/or postoperative complications were excluded.

Statistical analyses were performed by using SPSS version 22 program. Data were compared by using paired t-test. P < 0.05 was accepted as significant.


  Results Top


Preoperative mean BCVA of the patients was 0.54 ± 0.23 (SD) (0.3–1.00), postoperatively it was 0.03 ± 0.04 (SD) (0.00–0.10) according to the logarithm of the minimum angle of resolution scores. This increase in vision was statistically significant (P = 0.00).

Preoperative mean IOP value was 24.67 ± 2.14 (SD) (21–29) mmHg, the decrease in IOP values of the 1st week, 1st month, 3rd month, 6th month, and 1st year was statistically significant but that of the 2nd year was not significant. Preoperative mean ACD value was 2.98 ± 0.33 (SD) (2.4–3.6) mm. The increase in ACD values of the 1st week, 1st month, 3rd month, 6th month, and 1st year was statistically significant, but that of the 2nd year was not significant. Preoperative mean ICA value was Grade 2.85 ± 0.75 (2–4) according to Shaffer classification. The increase in ICA values of the 1st week, 1st month, 3rd month, 6th month, and 1st year was statistically significant, but that of the 2nd year was not significant. Preoperative mean CCT value was 550.89 ± 20.07 (SD) (520–595) mm. The increase in CCT values of 1st week and 1st month was statistically significant, but those of 3rd month, 6th month, 1st year and 2nd year were not significant. Postoperatively, visual field tests were performed every 6 months from a 1st postoperative month on. No visual field defect was detected in any patient.

In [Table 1] preoperative and postoperative BCVA, IOP, ACD, ICA, and CCT values are summarized. In [Figure 1], postoperative IOP changes, in [Figure 2], postoperative ACD changes, in [Figure 3], postoperative ICA changes, and in [Figure 4], postoperative CCT changes are illustrated.
Figure 1: Postoperative intraocular pressure changes

Click here to view
Figure 2: Postoperative anterior chamber depth changes

Click here to view
Figure 3: Postoperative ıridocorneal angle changes

Click here to view
Figure 4: Postoperative central corneal thickness changes

Click here to view
Table 1: Pre- and post-operative BCVA, IOP, ACD, ICA and CCT values


Click here to view


[TAG:2]Discussion[TAG:2]

It is known that the cataract extraction causes IOP reduction, but the mechanism is not known completely.[2] After cataract surgery, IOP reduction is more prominent in patients with acute or chronic ACG. The more shallow anterior chamber is preoperative, the more deepening will occur postoperatively, and ICA widens more and as a result of these, mean IOP reduction occurs more.[5] Nonaka et al.[6] showed that in patients with primary ACG, cataract surgery resulted in the dissolution of lens volume and pupillary block and also attenuation of the anterior positioning of the ciliary process, which contributed to the postoperative widening of the angle. Huang et al.[7] reported that postoperative reduction in IOP was proportional to the increase in angle after cataract surgery and postoperative IOP reduction was greater in eyes with a narrower angle.

Besides, after cataract surgery, IOP reduction is prominent in eyes with pseudoexfoliative glaucoma. This is due to increase blood-aqueous barrier permeability which is impaired in PEXsyndrome and intraoperative aspiration of the pseudoexfoliative material on anterior lens capsule and trabecular meshwork leading to increased outflow.[4]

The most important parameter affecting postoperative IOP is the preoperative IOP level, meaning the higher preoperative IOP is, the more postoperative reduction is, the lower preoperative IOP is, the less postoperative reduction is.[8]

Mansberger et al.[9] reported that cataract surgery decreased IOP in patients with OHT over a long period of time, at least 36 months.

Chang et al.[10] reported that, in ocular hypertensive and glaucoma patients, uncomplicated phacoemulsification had no significant IOP-lowering effect compared with the phakic fellow eye for up to 3 years postoperatively and also there was no difference between the mean number of postoperative IOP-lowering medications used in the surgical and fellow eyes.

In our study, we observed that, in patients with cataract and OHT, after phacoemulsification, reduction in IOP and increase in both ACD and ICA were statistically significant at postoperative 1st week, 1st month, 3rd month, 6th month, and 1st year, but these changes were not significant at the end of 2nd year.


  Conclusion Top


Phacoemulsification surgery decreases IOP and increases ACD and ICA in the short-term, but in the long-term, it does not cause any significant changes.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
  References Top

1.
Hayashi K, Hayashi H, Nakao F, Hayashi F. Changes in anterior chamber angle width and depth after intraocular lens implantation in eyes with glaucoma. Ophthalmology 2000;107:698-703.  Back to cited text no. 1
    
2.
Shrivastava A, Singh K. The effect of cataract extraction on intraocular pressure. Curr Opin Ophthalmol 2010;21:118-22.  Back to cited text no. 2
    
3.
Uçakhan OO, Ozkan M, Kanpolat A. Anterior chamber parameters measured by the pentacam CES after uneventful phacoemulsification in normotensive eyes. Acta Ophthalmol 2009;87:544-8.  Back to cited text no. 3
    
4.
Ismi T, Yilmaz A. Effects of cataract surgery on intraocular pressure in patients with and without glaucoma. Turk J Ophthalmol 2013;43:167-72.  Back to cited text no. 4
    
5.
Zhuo YH, Wang M, Li Y, Hao YT, Lin MK, Fang M, et al. Phacoemulsification treatment of subjects with acute primary angle closure and chronic primary angle-closure glaucoma. J Glaucoma 2009;18:646-51.  Back to cited text no. 5
    
6.
Nonaka A, Kondo T, Kikuchi M, Yamashiro K, Fujihara M, Iwawaki T, et al. Angle widening and alteration of ciliary process configuration after cataract surgery for primary angle closure. Ophthalmology 2006;113:437-41.  Back to cited text no. 6
    
7.
Huang G, Gonzalez E, Peng PH, Lee R, Leeungurasatien T, He M, et al. Anterior chamber depth, iridocorneal angle width, and intraocular pressure changes after phacoemulsification: Narrow vs open iridocorneal angles. Arch Ophthalmol 2011;129:1283-90.  Back to cited text no. 7
    
8.
Slabaugh MA, Bojikian KD, Moore DB, Chen PP. The effect of phacoemulsification on intraocular pressure in medically controlled open-angle glaucoma patients. Am J Ophthalmol 2014;157:26-31.  Back to cited text no. 8
    
9.
Mansberger SL, Gordon MO, Jampel H, Bhorade A, Brandt JD, Wilson B, et al. Reduction in intraocular pressure after cataract extraction: The Ocular Hypertension Treatment Study. Ophthalmology 2012;119:1826-31.  Back to cited text no. 9
    
10.
Chang TC, Budenz DL, Liu A, Kim WI, Dang T, Li C, et al. Long-term effect of phacoemulsification on intraocular pressure using phakic fellow eye as control. J Cataract Refract Surg 2012;38:866-70.  Back to cited text no. 10
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1]


This article has been cited by
1 Does Cataract Extraction Significantly Affect Intraocular Pressure of Glaucomatous/Hypertensive Eyes? Meta-Analysis of Literature
Andrea Pasquali, Luigi Varano, Nicola Ungaro, Viola Tagliavini, Paolo Mora, Matteo Goldoni, Stefano Gandolfi
Journal of Clinical Medicine. 2024; 13(2): 508
[Pubmed] | [DOI]
2 Central Corneal Thickness and Intraocular Pressure Changes Post- Phacoemulsification Surgery in Glaucoma Patients with Cataract
Ng Hong-Kee, Abdul-Aziz Ahmad-Marwan, Muhammed Julieana, Chong Mei Fong, Hee-Ming Vivian-Gong, Ahmad Tajudin Liza-Sharmini, Yaakub Azhany
Czech and Slovak Ophthalmology. 2023; 79(2): 70
[Pubmed] | [DOI]
3 Changes in ocular morphology after cataract surgery in open angle glaucoma patients
Giedre Pakuliene, Loreta Kuzmiene, Brent Siesky, Alon Harris, Ingrida Januleviciene
Scientific Reports. 2021; 11(1)
[Pubmed] | [DOI]
4 Evaluación del segmento anterior y cambios en la presión intraocular después de la cirugía de catarata por facoemulsificación
Adem Ugurlu, Nurdan Gamze-Tasli
Revista Mexicana de Oftalmología. 2020; 94(6S): 252
[Pubmed] | [DOI]
5 Biomechanical changes in the cornea following cataract surgery: A prospective assessment with the Corneal Visualisation Scheimpflug Technology
Henry B. Wallace, Stuti L. Misra, Sunny S. Li, James McKelvie
Clinical & Experimental Ophthalmology. 2019; 47(4): 461
[Pubmed] | [DOI]
6 EVALUATION OF ANTERIOR CHAMBER ANGLE PARAMETERS POST CATARACT SURGERY USING ANTERIOR SEGMENT OPTICAL COHERENCE TOMOGRAPHY
Vaishu Ann Marie Varghese, Rupali Chopra, Nitin Batra
Journal of Evidence Based Medicine and Healthcare. 2018; 5(20): 1549
[Pubmed] | [DOI]
7 Changes in Corneal Biomechanics and Intraocular Pressure Following Cataract Surgery
Kazunori Hirasawa, Shunsuke Nakakura, Yoshitaka Nakao, Yuri Fujino, Masato Matsuura, Hiroshi Murata, Yoshiaki Kiuchi, Ryo Asaoka
American Journal of Ophthalmology. 2018; 195: 26
[Pubmed] | [DOI]
8 New Glaucoma Surgical Procedures
Victoria Addis, Monica Zhang, Eydie Miller-Ellis
Advances in Ophthalmology and Optometry. 2016; 1(1): 389
[Pubmed] | [DOI]
9 Comment on: Intraocular pressure and anetrior segment anatomy after phacoemulsification surgery
Yakup Aksoy, Taner Kar, Abdullah Kaya
Indian Journal of Ophthalmology. 2016; 64(1): 99
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Materials and Me...
Results
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed2653    
    Printed51    
    Emailed0    
    PDF Downloaded305    
    Comments [Add]    
    Cited by others 9    

Recommend this journal