Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 952
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2016  |  Volume : 64  |  Issue : 4  |  Page : 285-291

Visual outcomes and optical quality after implantation of a diffractive multifocal toric intraocular lens


1 Department of Endocrinology, Geriatric Research Center, Nanjing 210002; Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
2 Department of Endocrinology, Geriatric Research Center, Nanjing 210002, China
3 Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China

Correspondence Address:
Dr. Yan Lu
Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu
China
Prof. Zhenping Huang
Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0301-4738.182939

Rights and Permissions

Background: This study evaluated the visual function after implantation of a multifocal toric intraocular lenses (IOLs). Materials and Methods: This study involved 10 eyes from eight cataract patients with corneal astigmatism of 1.0 diopter (D) or higher who had received phacoemulsification with implantation of an AcrySof IQ ReSTOR Toric IOL. Six-month evaluations included visual acuity, spherical equivalent (SE), defocus curve, residual astigmatism, IOL rotation, contrast sensitivity (CS), wavefront aberrations, modulation transfer function (MTF), and patient satisfaction assessments. Results: At 6 months postoperatively, uncorrected distance visual acuity (logarithm of the minimum angle of resolution) was 0.09 ± 0.04, corrected distance visual acuity was 0.02 ± 0.11, and uncorrected near visual acuity was 0.12 ± 0.07. The mean SE was −0.095 ± 0.394 D (±0.50 D in 90%). Refractive astigmatism at the 6-month follow-up visit was significantly reduced to 0.35 ± 0.32 D from 1.50 ± 0.41 D presurgery (P < 0.05). The mean IOL axis rotation was 3.20 ± 1.55°. Postoperative CS levels were high. Postoperative total order aberrations (TOAs), lower-order aberrations (LOAs), higher-order aberrations (HOAs), and spherical aberrations were decreased compared with preoperative values (P < 0.05). At 3 months postoperatively, TOAs, LOAs, and HOAs with a 3 mm pupil diameter as well as TOAs, LOAs, and astigmatism aberrations with a 5 mm pupil diameter were statistically lower than those at 1-month post surgery, but without subsequent significant changes (P > 0.05). There was an increase in MTF results between preoperative and postoperative evaluations at all spatial frequencies. Conclusions: The diffractive multifocal toric IOL is able to provide a predictable astigmatic correction with apparently outstanding levels of optical quality after implantation.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1819    
    Printed7    
    Emailed0    
    PDF Downloaded371    
    Comments [Add]    

Recommend this journal