Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 4270
  • Home
  • Print this page
  • Email this page
Year : 2019  |  Volume : 67  |  Issue : 11  |  Page : 1843-1849

Structural evaluation of preperimetric and perimetric glaucoma

1 Department of Glaucoma, Sarakshi Netralaya, Nagpur, Maharashtra, India
2 Department of Retina, Sarakshi Netralaya, Nagpur, Maharashtra, India
3 Department of Bioanalytics, MDS Bioanalytis, Nagpur, Maharashtra, India

Correspondence Address:
Dr. Gunjan Deshpande
Sarakshi Netralaya, 19 Rajiv Nagar, Wardha Road, Nagpur, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijo.IJO_1955_18

Rights and Permissions

Purpose: To evaluate diagnostic ability of macular ganglion cell layer–inner plexiform layer (GCL-IPL) for detection of preperimetric glaucoma (PPG) and perimetric glaucoma and comparison with peripapillary RNFL. Methods: Three hundred and thirty seven eyes of 190 patients were enrolled (127 normals, 70 PPG, 140 perimetric glaucoma). Each patient underwent detailed ocular evaluation, standard automated perimetry, and spectral domain optical coherence tomography. Diagnostic abilities of GCL-IPL and RNFL parameters were determined. Data were compared using one-way analysis of variance, Pearson's Chi-square test, and area under the curve (AUC). Results: After adjusting for age, gender, and signal strength, all GCL-IPL and RNFL parameters except mean thickness and disc area differed significantly. Among GCL-IPL thicknesses, inferotemporal had the highest AUC (0.865) for classifying perimetric glaucoma from normals, inferior (0.746) for PPG from normals, and inferotemporal (0.750) for perimetric glaucoma from PPG. When using RNFL, inferior thickness had the highest AUC (0.922) in discriminating POAG from normal, while the same parameter had lower AUC (0.813) in discriminating PPG from normal. The average thickness had maximum AUC (0.775) for discriminating POAG from PPG. For discriminating perimetric glaucoma and normals, inferotemporal GCL-IPL had the highest strength (sensitivity 81.43% and specificity 77.96%), slightly lower than inferior RNFL thickness (sensitivity 87.85% and specificity 84.26%). The same parameters were sensitive in discriminating perimetric glaucoma from PPG (87.14% and 92.85%, respectively). However, their specificities were poor (56.43% both). Conclusion: RNFL had better diagnostic ability, when compared with GCL-IPL for detecting PPG and perimetric glaucoma. However, difference was small and may not be clinically relevant.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded181    
    Comments [Add]    

Recommend this journal