Glyxambi
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 3573
  • Home
  • Print this page
  • Email this page

   Table of Contents      
ORIGINAL ARTICLE
Year : 2019  |  Volume : 67  |  Issue : 12  |  Page : 2005-2011

Management of retinoblastoma in older children (>5 years) using intra-arterial chemotherapy: Comparison of outcomes to prechemotherapy and intravenous chemotherapy eras


1 Ocular Oncology Service, Wills Eye Hospital, Philadelphia, PA, USA
2 Endovascular Service of the Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
3 Department of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA

Date of Submission31-Mar-2019
Date of Acceptance10-Jul-2019
Date of Web Publication22-Nov-2019

Correspondence Address:
Dr. Carol L Shields
Ocular Oncology Service, Suite 1440, Wills Eye Hospital, 840 Walnut Street, Philadelphia, PA 19107
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijo.IJO_642_19

Rights and Permissions
  Abstract 


Purpose: Intra-arterial chemotherapy (IAC) has emerged as an effective treatment for retinoblastoma (RB) however, little information exists regarding its use in older patients (>5 years). In the present study, we evaluate the use of IAC (2008–2018) for RB in older patients and compare the outcomes to those in the prechemotherapy (<1994) and intravenous chemotherapy (IVC) (1994–2007) eras. Methods: A retrospective analysis of all patients older than 5 years treated with IAC for RB from 2008–2018. Comparisons were made to 26 active RB cases in older children treated in the prechemotherapy era and to 12 active RB cases treated in the IVC era. Results: There were 13 eyes with RB in 13 older patients treated in the IAC era. The median patient age was 6.8 years. Tumor response was achieved in all 13 eyes at a median interval of 1.1 months from first IAC. Globe salvage was achieved in eight eyes with five eyes requiring enucleation. At 14 months, median follow-up after IAC, there was no metastasis or death. Compared to the prechemotherapy era, those in the IAC era demonstrated significant reduction in need for enucleation (P < 0.001) and EBRT or enucleation (P < 0.001). Compared to the IVC era, there was significant reduction in need for EBRT (P = 0.02) and EBRT or enucleation (P = 0.03) and similar avoidance of metastasis (P > 0.99) and death (P > 0.99). Conclusion: Older patients with RB managed in the IAC era demonstrated reduced need for EBRT or enucleation compared to those managed in the IVC or prechemotherapy eras, with no instance of metastasis or death.

Keywords: Children, eye, IAC, older, retinoblastoma


How to cite this article:
Selzer EB, Welch R J, Jabbour P, Leahey AM, Shields CL. Management of retinoblastoma in older children (>5 years) using intra-arterial chemotherapy: Comparison of outcomes to prechemotherapy and intravenous chemotherapy eras. Indian J Ophthalmol 2019;67:2005-11

How to cite this URL:
Selzer EB, Welch R J, Jabbour P, Leahey AM, Shields CL. Management of retinoblastoma in older children (>5 years) using intra-arterial chemotherapy: Comparison of outcomes to prechemotherapy and intravenous chemotherapy eras. Indian J Ophthalmol [serial online] 2019 [cited 2019 Dec 9];67:2005-11. Available from: http://www.ijo.in/text.asp?2019/67/12/2005/271391



A majority (95%) of retinoblastoma (RB) cases occur in children under the age of 5 years; however, RB can be present in older children and even manifest in adults, with the oldest published patient demonstrating newly diagnosed RB at 74 years of age.[1],[2],[3],[4],[5],[6],[7],[8] Older children and adults with newly diagnosed RB tend to present with more disease, often requiring enucleation. In a literature search of 45 published cases of adult-onset RB from 1919 to 2015, globe salvage was achieved in only two cases (4%).[1]

The efficacy and safety of intra-arterial chemotherapy (IAC) have been established in several studies;[9],[10],[11],[12],[13],[14],[15],[16] revealing approximately 67% globe salvage even with advanced eyes and minimal local toxicity to the globe, especially in recent years, as published from our center and others.[14],[15],[16] However, little information is available on the results of IAC for older children and adults. In this retrospective analysis, we explore the use of IAC for RB in older patients and compare results to previously published reports representing data from the prechemotherapy era (<1994)[2] and the intravenous chemotherapy (IVC) era (1994–2007).[17]


  Methods Top


This analysis was compliant to the tenets of the Declaration of Helsinki and was approved by the Institutional Review Board of the Wills Eye Hospital, Philadelphia, Pennsylvania. All patients from the ocular oncology service with RB and age ≥5 years were reviewed. Those treated with IAC as a primary or secondary measure were selected for analysis. Patients less than 5 years of age were excluded from the study. This analysis was compliant to the tenets of the Declaration of Helsinki and was approved by the Institutional Review Board of the Wills Eye Hospital, Philadelphia, Pennsylvania.

All patients were examined under anesthesia when necessary, using indirect ophthalmoscopy and fundus details were documented using large fundus drawings, external photography, wide-angle fundus photography, fluorescein angiography, B-scan ultrasonography, and optical coherence tomography. The procedure for IAC has been described elsewhere.[9],[10]

Recorded data included age at diagnosis, race, sex, symptom, hereditary pattern of RB (familial, sporadic), affected eye (right, left, both), age at treatment, and visual acuity. Each eye was classified according to the International Classification for International Classification for Retinoblastoma (ICRB).[18],[19] Each tumor was evaluated for largest basal dimension, thickness, proximity to the optic disc, and foveola (in mm), associated subretinal or vitreous seeds, macular subretinal fluid, and anterior segment tumor. Treatment with IAC was characterized by a number of cycles, agents used (melphalan, topotecan, carboplatin), and cumulative dose. Additional treatments including intravitreal chemotherapy, IVC, plaque radiotherapy, and external beam radiation therapy (EBRT) were noted. After each cycle of IAC, tumor response was observed clinically and documented photographically and ultrasonographically. Visual acuity following treatment was documented.

Comparisons to historical data were performed to evaluate differences in the need for EBRT, enucleation, EBRT or enucleation, and the development of metastasis and death. All 13 cases were compared to 26 active RB cases in older children treated in the prechemotherapy era,[2] and 10 of the 13 cases (those with unilateral RB only) were compared to 12 active unilateral RB cases in a series treated with IVC.[17] Data were compiled in Microsoft Excel (2016) and measures of central tendency were calculated. Statistical comparisons were made using a two-sided Fisher's exact test. P values < 0.05 were considered statistically significant.


  Results Top


In this study, there were 13 eyes with RB in 13 older patients (>5 years) that received IAC. Patient demographic and clinical features are listed in [Table 1]. The median patient age at the time of IAC was 6.8 years (mean 10.1, range 5.2-32.3 years). The patients were male (7/13, 54%) and white (11/13, 84%). The median visual acuity on presentation was 20/100 (mean 20/400, range 20/20-light perception (LP)). Patients presented a median of 1 tumor per eye (mean 1.5, range 1–8). The eyes were classified as either group D (n = 9, 69%) or group E (n = 4, 31%) according to ICRB [Figure 1]. Three patients had bilateral RB, but only one eye was treated with IAC in each case.
Table 1: Intra-arterial chemotherapy (IAC) for retinoblastoma in older patients (>5 years): Patient demographics and clinical features at the time of IAC

Click here to view
Figure 1: Retinoblastoma in older children. A 71-month-old female with unilateral leukocoria (a) and funduscopy (b) demonstrating a large group D retinoblastoma. Following six cycles of intra-arterial chemotherapy and six intravitreal chemotherapy injections, (c) the tumor demonstrated rapid reduction, but recurrent subretinal seeds lead to enucleation per parent request. An 81-month-old female with unilateral leukocoria (d) and funduscopy (e) demonstrating a large group E retinoblastoma. Following four cycles of intra-arterial chemotherapy and six intravitreal chemotherapy injections, (f) tumor control was achieved with ultimate globe salvage

Click here to view


The median largest basal tumor dimension was 16 mm (mean 15.2, range: 7–24 mm) with a median thickness of 7 mm (mean 7, range 3–14 mm) as measured by ultrasonography. Tumors were a median of 2 mm from the foveola (mean 3.5, range 0–9 mm) and 3 mm from the optic disc (mean 3.6, range 0–10 mm). Vitreous seeding was present in 12 patients (92%), subretinal seeding in six patients (46%), and no view of the retina in three patients (23%). Anterior segment seeding was present in three patients (23%).

Treatment and outcomes are listed in [Table 2]. Intra-arterial chemotherapy was primary therapy (n = 8, 62%) or secondary therapy (n = 5, 38%). Previous treatments included IVC (n = 4), plaque radiotherapy (n = 1), intravitreal chemotherapy (n = 1), or EBRT (n = 1). The median number of IAC cycles was 3 (mean 3.6, range 2–7 cycles). A median cumulative dose of 20 mg of melphalan (mean 19.6, range 10–45 mg), 3 mg topotecan (mean 2.6, range 1–4 mg), and 0 mg of carboplatin (mean 9.2 mg, range 0–120 mg).
Table 2: Intra-arterial chemotherapy (IAC) for retinoblastoma in older patients (>5 years): Treatments and outcomes

Click here to view


Initial tumor response was observed in all 13 eyes at a median interval of 1.1 months (mean 1.3, range 0.9–2.3 months) [Figure 1]. The globe was salvaged in eight eyes (62%) and enucleation was necessary in five eyes (38%) for reasons of recurrence of solid tumor (n = 2), vitreous seeds (n = 2), or subretinal seeds (n = 1). Two of the three eyes with anterior segment seeding were enucleated due to recurrent seeding. There was no instance of metastasis or death after a median follow-up of 14 months. Of the eight eyes in which globe salvage was achieved, the median visual acuity was 20/400 (mean: 20/400, range 20/30-light perception). Each patient course is listed in [Table 3].
Table 3: Summary of demographics, treatment, and outcomes in 13 older patients (>5 years) with retinoblastoma treated with intra.arterial chemotherapy (IAC)

Click here to view


In [Table 4], a comparison of these 13 older patients with RB managed with IAC versus 26 older patients with active RB treated in the prechemotherapy era is listed. Patients treated with IAC demonstrated a significant reduction in need for enucleation (P value <0.001) and EBRT or enucleation (P < 0.001), along with insignificant reductions in the need for EBRT (P = 0.07). There was no difference in prevention of metastasis (P = 0.28) or death (P = 0.28).
Table 4: Outcomes of retinoblastoma management in older children (>5 years) in the intra-arterial chemotherapy (IAC) era (2008-2018) vs. the prechemotherapy era (<1994)

Click here to view


In [Table 5], a comparison of 10 older patients with unilateral RB treated with IAC versus 12 older patients with unilateral RB (Reese-Ellsworth group V) treated with IVC is listed. There was significant reduction in need for EBRT (P-value = 0.02) and EBRT or enucleation (P = 0.03) in those treated with IAC, insignificant reduction in enucleation (P = 0.23). There was no difference in prevention of metastasis (P > 0.99) or death (P > 0.99).
Table 5: Outcomes of retinoblastoma management in older children (>5 years) in the intra-arterial chemotherapy (IAC) era (2008-2018) vs. the intravenous chemotherapy (IVC) era (1994-2007)

Click here to view



  Discussion Top


There have been few published series on the topic of RB in older children.[1],[2],[3],[4],[5],[6],[7],[8] In most series, management was enucleation for all subjects.[1],[2],[3],[4],[5],[6],[7],[8] The largest published series of RB in older patients revealed enucleation in 24 out of 26 cases (92%),[2] and a review of published case reports and case series revealed enucleation in 43 of 45 cases (96%).[1] In those large cohorts, metastases occurred in 15% and death in 7%.[1],[2] An additional comprehensive study in 1986, on the effect of age at diagnosis of RB on patient survival in 1147 patients, revealed retinoblastoma-related mortality for young patients (0–1 years) was 4.6%, for intermediate age patients (1–2 years) was 8.9%, for older patients (2–7 years) was 19%, and for the oldest patients (7 years) was 2%.[20] Since the publication of that report 33 years ago, survival has improved conclusively.[21]

More recently, we and others have employed IAC for moderate to advanced RB, particularly in patients with unilateral disease.[9],[10],[11],[12],[13],[14],[21],[22] In a cohort of 70 eyes with RB managed with IAC in patients of all ages; we achieved complete tumor control with globe salvage in 72% of those treated primarily and 62% of those treated secondarily (after the failure of other treatments).[13] In that series, none of the patients developed metastatic disease or had a serious adverse event such as cerebrovascular accident, despite catheterization of the internal carotid artery. An international collaborative effort from six major RB centers, including ours, evaluating 1177 eyes of 1139 patients with RB managed with IAC found metastatic disease and death in three patients (<1%), all treated in South America and with difficulty in follow-up.[22] This compelling evidence provides the support that IAC can adequately control RB with little risk for metastasis and death.

In this analysis, we evaluated a unique subset of patients older than the age of 5 years to explore if IAC provided adequate control for this older cohort. At a median of 14 months follow-up, we found compelling evidence that IAC was safe and effective for these patients, with the need for additional EBRT in no case, enucleation in 5 cases, and metastasis and death in no case. The patients in this series had advanced RB with ICRB group D (n = 9) or E (n = 4) as is typical in older patients presenting with RB.

Further, comparison of this older cohort managed in the IAC era (2008-2018) versus a similar cohort managed in the prechemotherapy era (<1994) revealed significant reduction in the need for enucleation (P value <0.001) and EBRT or enucleation (P < 0.001). Moreover, comparison of those in the IAC era to those in the IVC era (1994-2007), revealed significant reduction in EBRT (P = 0.02) and EBRT or enucleation (P = 0.03), and similar prevention of metastasis (P > 0.99) and death (P > 0.99). Both of these comparisons support our observations that IAC is more effective than IVC or older methods in avoiding EBRT and/or enucleation, without risking tumor-related metastasis.

There are limitations to our analysis as we realize that these older patients are from published cohorts at different eras, and staging and treatment strategies have evolved over time. In addition, our evaluation of RB in older children during the IAC era included only those selected for IAC, while there were others who were managed with enucleation, deemed not suitable for IAC. Furthermore, our comparison of IAC to IVC for unilateral RB included all ages and might not be directly comparable to our older children described herein. However, it has been shown that RB in older children tends to be more advanced with greater risk for metastasis and death.[20] The globe salvage and survival rates in this study cannot be attributed solely to IAC, as IVT and prior therapies are equally contributory. In addition, longer follow-up regarding metastasis and death is preferred and our study is limited by a relatively short follow-up interval.


  Conclusion Top


In summary, we present 13 cases of RB in older children treated with IAC and with ultimate globe salvage in 62% and with no evidence of metastasis or death. Despite most eyes having advanced disease, IAC was safe and effective. Furthermore, comparisons to similar cohorts treated in the prechemotherapy and IVC eras suggested a reduction in need for additional EBRT and/or enucleation. We advise that selected older children with RB could be managed successfully with IAC.

Acknowledgements

We would like to acknowledge Kunal Malik for his help in creating the spreadsheet used for data collection.

Financial support and sponsorship

Support provided by the Eye Tumor Research Foundation, Philadelphia, PA (CLS). The funders had no role in the design and conduct of the study, in the collection, analysis, and interpretation of the data, or in the preparation, review or approval of the manuscript. All authors have met the criteria for inclusion and the manuscript has been read and approved by all authors. Carol Shields, M.D. has had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. No conflicting relationship exists for any author.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Sengupta S, Pan U, Khetan V. Adult-onset retinoblastoma. Indian J Ophthalmol 2016;64:485-91.  Back to cited text no. 1
[PUBMED]  [Full text]  
2.
Shields CL, Shields JA, Shah P. Retinoblastoma in older children. Ophthalmology 1991;98:395-9.  Back to cited text no. 2
    
3.
Kaliki S, Shields CL, Gupta A, Mishra DK, Das C, Say EAT, et al. Newly diagnosed active retinoblastoma in adults. Retina 2015;35:2483-8.  Back to cited text no. 3
    
4.
Karcioglu ZA, Abboud EB, Al-Mesfer SA, Al-Rashed W, Pilapil DH. Retinoblastoma in older children. J AAPOS 2002;6:26-32.  Back to cited text no. 4
    
5.
Aguirre Neto JC, Antoneli CB, Ribeiro KB, Castilho MS, Novaes PE, Chojniak MM, et al. Retinoblastoma in children older than 5 years of age. Pediatr Blood Cancer 2007;48:292-5.  Back to cited text no. 5
    
6.
Chang Y, Shi J, Zhao J, Xu X, Ma J, Shen L, et al. Retinoblastoma in Chinese children aged five to fourteen years. Ophthalmologica 2015;233:222-9.  Back to cited text no. 6
    
7.
Biswas J, Mani B, Shanmugam MP, Patwardhan D, Kumar KS, Badrinath SS. Retinoblastoma in adults: Report of three cases and review of the literature. Surv Ophthalmol 2000;44:409-14.  Back to cited text no. 7
    
8.
Finlay JR, Byron H. Retinoblastoma in the adult: Review of literature and report of a case associated with benign melanoma. Acta XIX Concil Ophthalmol 1962;40:1168-78.  Back to cited text no. 8
    
9.
Gobin YP, Dunkel IJ, Marr BP, Brodie SE, Abramson DH. Intra-arterial chemotherapy for the management of retinoblastoma four-year experience. Arch Ophthalmol 2011;129:732-7.  Back to cited text no. 9
    
10.
Shields CL, Bianciotto CG, Jabbour P, Ramasubramanian A, Lally SE, Griffin GC, et al. Intra-arterial chemotherapy for retinoblastoma: Report no. 1, control of tumor, subretinal seeds, and vitreous seeds. Arch Ophthalmol 2011;129:1399-406.  Back to cited text no. 10
    
11.
Shields CL, Kaliki S, Al-Dahmash S, Rojanaporn D, Leahey A, Griffin G, et al. Management of advanced retinoblastoma with intravenous chemotherapy then intra-arterial chemotherapy as alternative to enucleation. Retina 2013;33:2103-9.  Back to cited text no. 11
    
12.
Shields CL, Kaliki S, Shah SU, Bianciotto CG, Liu D, Jabour P, et al. Minimal exposure (one or two cycles) intra-arterial chemotherapy in the management of retinoblastoma. Ophthalmology 2012;119:188-92.  Back to cited text no. 12
    
13.
Shields CL, Manjandavida FP, Lally SE, Pieretti G, Arepalli SA, Caywood EH, et al. Intra-arterial chemotherapy for retinoblastoma in 70 eyes. Ophthalmology 2014;121:1453-60.  Back to cited text no. 13
    
14.
Grigorovski N, Lucena E, Mattosinho C, Parareda A, Ferman S, Catalá J, et al. Use of intra-arterial chemotherapy for retinoblastoma: Results of a survey. Int J Ophthalmol 2014;7:726-30.  Back to cited text no. 14
    
15.
Dalvin LA, Ancona-Lezama D, Lucio-Alvarez JA, Masoomian B, Jabbour P, Shields CL, et al. Ophthalmic vascular events following primary unilateral IAC for retinoblastoma in early and recent eras. A consecutive comparative analysis. Ophthalmology 2018;125:1803-11.  Back to cited text no. 15
    
16.
Ancona-Lezama D, Dalvin LA, Lucio-Alvarez JA, Jabbour P, Shields CL. Ophthalmic vascular events after intra-arterial chemotherapy for retinoblastoma. Real-world comparison between primary and secondary treatments. Retina 2018; Sep 7 [Epub ahead of print]. doi: 10.1097/IAE.0000000000002315.  Back to cited text no. 16
    
17.
Shields CL, Honavar SG, Meadows AT, Shields JA, Demirci H, Naduvilath TJ. Chemoreduction for unilateral retinoblastoma. Arch Ophthalmol 2002;120:1653-8.  Back to cited text no. 17
    
18.
Murphree LA. Intraocular retinoblastoma: The case for a new group classification. Ophthalmol Clin North Am 2005;18:41-53.  Back to cited text no. 18
    
19.
Shields CL, Shields JA. Basic understanding of current classification and management of retinoblastoma. Curr Opin Ophthalmol 2006;17:228-34.  Back to cited text no. 19
    
20.
Abramson DH, Ellsworth RM, Grumbach N, Sturgis-Buckhout L, Haik BG. Retinoblastoma: Correlation between age at diagnosis and survival. J Pediatr Ophthalmol Strabismus 1986;23:174-7.  Back to cited text no. 20
    
21.
Abramson DH, Shields CL, Munier FL, Chantada G. Treatment of retinoblastoma in 2015: Agreement and disagreement. JAMA Ophthalmol 2015;133:1341-7.  Back to cited text no. 21
    
22.
Abramson DH, Shields CL, Jabbour P, Teixeira LF, Munier FL, Puccinelli F, et al. Metastatic deaths in retinoblastoma patients treated with intraarterial chemotherapy (ophthalmic artery chemosurgery) worldwide. Int J Retina Vitreous 2017;3: doi: 10.1186/s40942-017-0093-8.  Back to cited text no. 22
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Methods
Results
Discussion
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed165    
    Printed0    
    Emailed0    
    PDF Downloaded56    
    Comments [Add]    

Recommend this journal