Glyxambi
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 4860
  • Home
  • Print this page
  • Email this page


 
   Table of Contents      
ORIGINAL ARTICLE
Year : 2019  |  Volume : 67  |  Issue : 3  |  Page : 386-390

Prevalence of ocular morbidity among tribal children in Jawadhi hills, southern India: A cross-sectional study


1 Department of Ophthalmology, Schell Eye Hospital, Christian Medical College, Vellore, Tamil Nadu, India
2 Department of Community Medicine, CHAD Hospital, Christian Medical College, Vellore, Tamil Nadu, India

Date of Submission27-Jun-2018
Date of Acceptance25-Oct-2018
Date of Web Publication18-Feb-2019

Correspondence Address:
Assoc. Prof. Deepa John
Department of Ophthalmology, Schell Eye Hospital, Christian Medical College, Arni Road, Vellore - 632 001, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijo.IJO_795_18

Rights and Permissions
  Abstract 


Purpose: Childhood blindness is second to cataract in terms of blind person years; population-based prevalence of ocular morbidity among tribal children has not been studied. We conducted this study to determine the prevalence of ocular morbidity in tribal children age 15 years or younger in Jawadhi hills, southern India. Methods: A population-based cross-sectional study was conducted in four tribal villages where all children below 15 years of age were invited to participate in the study. After appropriate consent/assent, an optometrist assessed uncorrected vision refraction and best-corrected visual acuity using suitable techniques. A comprehensive ophthalmic examination was also done by an ophthalmologist to determine the presence of ocular morbidity. Children requiring cycloplegic refraction or further treatment were referred to the base hospital. Results: Among 260 children examined, the prevalence of ocular morbidity was 10.8% [95% confidence interval (CI): 6.3–13.7]. Vitamin A deficiency (VAD) was the foremost morbidity: 4.6% (95% CI 1.6–6.3) followed by refractive error (2.7%). Three (10.7%) children had more than one ocular morbidity. Nearly 1 in 10 tribal children suffer from ocular morbidity and 1 in 57 had low vision. Conclusion: VAD is a public health problem in this tribal region which requires immediate intervention with prophylaxis and treatment. Uncorrected refractive errors in school-age children also need to be attended.

Keywords: Low vision, ocular morbidity, refractive error, tribal children, vitamin A deficiency


How to cite this article:
Mahesh K M, John D, Rose A, Paul P. Prevalence of ocular morbidity among tribal children in Jawadhi hills, southern India: A cross-sectional study. Indian J Ophthalmol 2019;67:386-90

How to cite this URL:
Mahesh K M, John D, Rose A, Paul P. Prevalence of ocular morbidity among tribal children in Jawadhi hills, southern India: A cross-sectional study. Indian J Ophthalmol [serial online] 2019 [cited 2019 May 24];67:386-90. Available from: http://www.ijo.in/text.asp?2019/67/3/386/252430



Childhood blindness is defined as best-corrected visual acuity (BCVA) less than 3/60 in the better eye in those 16 years and younger. It is second only to cataract in terms of “blind person years.”[1] Childhood blindness affects a child socially as well as his or her educational and personal aspects.[2] Estimates show that 1.4 million children suffer from visual impairment worldwide and three-quarters of them are in developing countries.[1]

According to population-based studies conducted in India, the prevalence of ocular morbidity in children varies from 1.3% to 6.54%,[3],[4],[5] and data from school-based studies from India and developing countries show a prevalence of 13%–45%.[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18]

Common childhood ocular morbidities are refractive errors and whole globe anomalies.[5] Refractive errors constitute a major burden of avoidable blindness.

We conducted this study in Jawadhi hills which are extensions of the Eastern Ghats spread across parts of Tiruvannamalai and Vellore districts of Tamil Nadu. A total of 80,000 people, mostly Malayali tribes from low to moderate socioeconomic backgrounds, live in these hills with poor road access, drinking water, and sanitation. There is no single established ophthalmologist in these hills, and people with ocular problems come down to the plains for treatment. In this tribal area, penetration of the National Vitamin A Prophylaxis Programme (NVAPP) is questionable due to access issues, poor medical facilities, and migration out of the area for several months in a year for employment. The objective of the study was to determine the pattern of ocular morbidity in children 15 years of age or younger in the Jawadhi tribal area in southern India.


  Methods Top


A population-based cross-sectional study was conducted in the Jawadhi hills in April and May 2014 involving the Departments of Ophthalmology and Community Health.

Ethics

The study was cleared by the institutional ethics and review board and conformed to the Declaration of Helsinki and the ethical guidelines for biomedical research on human participants enunciated by the Indian Council of Medical Research.

Sample size

Large multistaged population-based studies found a low prevalence of ocular morbidity ranging from 1.3% to 6.54%,[3],[4],[5] and school-based studies reported prevalence of 13%–44.7%.[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18] These were multistaged, whereas in our study the ophthalmologist was to examine all the children. We assumed a prevalence of 20% which was between the two values from different study designs. For a power of 80% and alpha of 0.05, using the formula: N = 4pq/d2 [(wherepis the prevalence from previous study, q is 100 – p, and d is the allowable error (25% of p)]; the sample size was 256 children 15 years of age and younger.

Identification of study subjects

The “probability proportional to size” model was used to select the study villages (from a total of 40 villages) to yield the required number of 256 children below the age of 15 years, from previous enumeration of the population. All children in the age group of 0–15 years who were residing in this address for more than 6 months, who were willing to participate, and whose parents gave consent were included in the study. Health workers identified the enumerated eligible children and invited them to predetermined study sites in the respective villages.

Consent

Informed consent and child assent among children 8 years and older was obtained by a trained health worker.

Procedures at study site

A team of three optometrist trainees were trained in assessing vision and performing refraction for the study children. Each child was tested for presenting visual acuity by trainees using techniques suitable for age, depending on the child being verbal or preverbal and school-going or not. The methods used were Cardiff cards for nonverbal and nonschool-going verbal children and Snellen's chart for school-going children. Best corrected visual acuity in verbal children was done when possible.

The child was subjected to routine anterior segment eye examination by the ophthalmologist using flash light examination (LED torch light) and handheld slit lamp (Heine HSL 150). Following this, pupillary dilatation was done using using pediatric tropicamide (0.4%) drops. Wet refraction was done and posterior segment examined using indirect ophthalmoscopy (Appasamy AAIO-7) with 20D lens. Treatment for ocular morbidity [e.g. vitamin A deficiency (VAD)] was done at site when feasible, and children requiring spectacles were given the same. Children with VAD were given vitamin A capsules according to World Health Organization (WHO) guidelines. Children requiring cycloplegic refraction and/or surgical management were referred to the Department of Ophthalmology.

Ocular morbidity was defined as an abnormality in any of the ocular structures, which may or may not be visually significant and which may or may not require/improve with treatment; myopia is a spherical equivalent (SE) of −0.50 dioptre sphere, hyperopia a SE of +2.00 dioptre sphere, and astigmatism a cylindrical power of −0.50 dioptre cylinder or greater in either eye. Amblyopia was a difference of two lines or more in best-corrected vision between the two eyes or a best-corrected vision of 6/12 or worse in the affected eye. Blindness was defined as BCVA <6/60 and low vision <6/18–6/60 or more in the better eye.

Statistics

Prevalence of ocular morbidity was determined along with 95% confidence interval (CI). Frequencies of categorical variables and descriptive statistics for continuous variables were calculated. We used logistic regression to assess association of age of the child, literacy of parent, socioeconomic status (SES), gender, birth order, history of being breastfed, previous eye examination in those with ocular morbidity, and VAD. Statistical analysis was done using SPSS for Windows, Version 16.0. Chicago, SPSS Inc.


  Results Top


The study was conducted among children age 15 years or younger, belonging to four different villages in Jawadhi hills during the months of April and May 2014. These four villages had a total population of 1105 including 389 children (29.1%) age 15 years or younger as per enumeration. Of these 389 children, we were able to study 260, thus the coverage was 66.8% [Figure 1]. The remaining 129 (33.2%) children could not be studied, as 81 (20%) had temporarily migrated out of the region during the period of the survey (in hostels/out of town) and 48 (12%) were not willing to participate in the study.
Figure 1: Flow of study

Click here to view


There were no statistically significant differences between the two groups (children studied and not studied) in terms of age distribution (P = 0.87), gender (P = 0.84), or SES (P = 0.42). Most families belonged to the lower socioeconomic groups (55.4%), which was statistically significant (P = 0.003).

Children below 15 years of age were examined. The mean age was 7.5 years (standard deviation 4.07 years). Most children (66%) were in the age group of >5 years, as shown in [Table 1]. The majority (63.5%) of the parents included in the study were literate; most (98.5%) parents had no knowledge about vitamin A prophylaxis. There were 42 children (16.2%) age 2–5 years going to a balwadi and 173 children (66.5%) attending school. About 68.5% of children were of birth order of 1 or 2. The majority [258 (99%)] of the children in the study group reported normal developmental milestones.
Table 1: Demographic distribution of children examined in the study

Click here to view


Most deliveries [229 (88%)] were conducted at home. Only six (23%) children were not breastfed, and 45% of the children were breastfed for a minimum of 2 years. Immunization cards were kept at primary health centers.

Among the 260 children studied, 28 children had ocular morbidity, and thus the prevalence was 10.8% (95% CI 6.3%–13.7%). VAD was the most common morbidity (42.9%), in the form of conjunctival xerosis and Bitot's spots, followed by refractive error (25%), episcleritis (7.1%), lid injuries (lid abrasion and lid scar) (7.1%), strabismus (7.1%), and retinitis pigmentosa (3.6%) [Figure 2]. Three (10.7%) children had more than one ocular morbidity. Of the 28 children with ocular morbidity, those who had refractive error (7), episcleritis (2), and strabismus (2) were referred. The prevalence of Bitot's spot and xerosis in our study was 3.5% and 1.2%, respectively.
Figure 2: Distribution of ocular morbidity

Click here to view


On performing univariate logistic regression, ocular morbidity is significantly associated with age >5 years. Even after adjusting for gender, SES, and parents' educational level, children >5 years had five times the odds of having ocular morbidity when compared with children <5 years. The wide CI in the analyses is a reflection of the sample size [Table 2]. In our study, two children were found to have low vision at presentation, of which one child had amblyopia due to strabismus [Table 3].
Table 2: Factors associated with ocular morbidity

Click here to view
Table 3: Best-corrected visual acuity of children examined

Click here to view



  Discussion Top


This study gives us preliminary insight into the profile of ocular morbidity among children in the tribal hamlets of Jawadhi Hills, southern India. In this study, prevalence of ocular morbidity was 10.8%. This was higher than other population-based studies reported by Nirmalan et al. in a south Indian population (2.8%)[4] and the Andhra Pradesh eye disease study[3] by Dandona et al. (1.3%). The higher prevalence of ocular morbidity in our study was influenced by the study model and methodology where all children were examined by an ophthalmologist. In other population-based studies, children were initially screened by trained field workers and only those suspected to have ocular morbidity were referred to the base hospital.[3],[4]

Two children with episcleritis were given ketorolac eye drops and referred to the base hospital for further management along with children who had refractive error and strabismus. In our study, VAD was the most common ocular morbidity (4.2%) which manifested as Bitot's spots and conjunctival xerosis, comparable to the findings by Prajapatip et al.[15] among adolescents (10–19 years) of Gujarat (3.8%) and Jayanth et al.[14] (3.53%) among school children (10–16 years) in rural Maharashtra.

A reason for the relatively high prevalence of VAD in our study maybe because this was done in a tribal area where the majority belonged to low SES group and the local food habits. Samai rice is the staple diet of the region which is rich in proteins but has negligible amounts of vitamin A. Also, the region is isolated from urban areas by geographic and cultural differences.

The prevalence of Bitot's spot and xerosis in our study was 3.5% and 1.2%, respectively, which was higher than the WHO criteria (Bitot's spot 0.5%, xerosis 0.5%) for pronouncing it a public health problem.[19] In the National Family Health Survey-3, children age 12–35 months who received a vitamin A dose in the last 6 months (Tamil Nadu) were reported to be 49.1% in urban and 41.1% in rural areas.[20] Unlike our study, the tribal study from Odisha, TOES, did not report any ocular morbidity due to nutritional deficiency. This study was done in Odisha in eastern India. They found a prevalence of ocular morbidity of 2.6% among tribal children in an urban school.[21] TOES 4 study done among tribals in Odisha using photorefractor has found refractive error as a significant cause of ocular morbidity.[22]

While our study was not powered to determine the prevalence of VAD, these results warn of the prevailing public health problem in the Jawadhi region which requires immediate intervention and further study with higher sample sizes involving all 250 villages in the area. The intervention needs three stages: creating awareness through public health education, immunization for factors predisposing to VAD, and intensified NVAPP and sustainable food–based solutions along with suitable treatment of existing cases.

In our study, two children had low vision (<6/18–6/60). The reasons for visual impairment seen in these children were strabismus and uncorrected refractive error.

School eye screening program needs to be strengthened; otherwise, these children with low vision will underperform not only as students but also later as adults. The fact that prevalence of ocular morbidity is significantly higher among children over 5 years proves that it is sufficient to screen children in the school rather than in the general population.

Of the 11 children referred to the Department of Ophthalmology, only two (18%) reported for treatment. The remaining children did not turn up for further examination in spite of repeated counseling by the ophthalmologist and instructions from field workers. The attitude may be a reflection of barriers to access and their health-seeking behavior. These findings also reflect the urgent need to strengthen the NVAPP and school eye screening programs in tribal areas and the need to provide specialized eye care in the Jawadhi area.

Limitations

Our study determined a prevalence of ocular morbidity of 10% which was lower than expected during calculation of sample size. The wide CIs for the regression analysis are a further reflection of the same. These findings therefore serve as a flag for further research and intensifying eye care services in this region.

This being a tribal population, it is inherently migrant as reflected in the study coverage (66%). The paucity of literature from previous years on eye care in the tribal population, except one school-based study, does not permit meaningful comparisons; furthermore, poor accessibility to these villages resulted in an inability to manage all affected children.


  Conclusion Top


One in 10 tribal children suffers from ocular morbidity and 1 in 57 has low vision. VAD is the foremost ocular morbidity among children of the Jawadhi hills followed by refractive error, mainly in those age 5 years and above. Poor availability of eye care in the hills coupled with poor eye health-seeking behavior magnifies the problem.

Acknowledgements

The authors acknowledge with gratitude the contribution of health workers, parents, and children who participated in the study.

Financial support and sponsorship

Institutional fluid research grant.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Gilbert C, Foster A. Childhood blindness in the context of VISION 2020 – The right to sight. Bull World Health Organ 2001;79:227-32.  Back to cited text no. 1
    
2.
Rahi JS, Gilbert CE, Foster A, Minassian D. Measuring the burden of childhood blindness. Br J Ophthalmol 1999;83:387-8.  Back to cited text no. 2
    
3.
Dandona R, Dandona L, Srinivas M, Giridhar P, Prasad MN, Vilas K, et al. Moderate visual impairment in India: The Andhra Pradesh Eye Disease Study. Br J Ophthalmol 2002;86:373-7.  Back to cited text no. 3
    
4.
Nirmalan PK, Vijayalakshmi P, Sheeladevi S, Kothari MB, Sundaresan K, Rahmathullah L. The Kariapatti Pediatric Eye Evaluation Project: Baseline ophthalmic data of children aged 15 years or younger in southern India. Am J Ophthalmol 2003;136:703-9.  Back to cited text no. 4
    
5.
Kemmanu V, Hegde K, Giliyar SK, Shetty BK, Kumaramanickavel G, McCarty CA. Prevalence of childhood blindness and ocular morbidity in a rural pediatric population in southern India: The Pavagada Pediatric Eye Disease Study-1. Ophthal Epidemiol 2016;23:185-92.  Back to cited text no. 5
    
6.
Kumar P, Pore P, Dixit AK, Jha AK, Ahmad A, Chauhan N. Demographic profile of ocular morbidity in school children in India. Sch J App Med Sci 2013;1:645-52.  Back to cited text no. 6
    
7.
Shrestha RK, Joshi MR, Ghising R, Pradhan P, Shakya S, Rizyal A. Ocular morbidity among children studying in private schools of Kathmandu valley: A prospective cross sectional study. Nepal Med Coll J 2006;8:43-6.  Back to cited text no. 7
    
8.
Kumar R, Dabas P, Mehra M, Ingle GK, Saha R. Ocular morbidity amongst primary school children in Delhi. Health Popul Issues 2007;30:222-9.  Back to cited text no. 8
    
9.
Nepal BP, Koirala S, Adhikary S, Sharma AK. Ocular morbidity in school children in Kathmandu. Br J Ophthalmol 2003;87:531-4.  Back to cited text no. 9
    
10.
Gupta M, Gupta BP, Chauhan A, Bhardwaj A. Ocular morbidity prevalence among school children in Shimla, Himachal, North India. Indian J Ophthalmol 2009;57:133-8.  Back to cited text no. 10
[PUBMED]  [Full text]  
11.
Chaturvedi S, Aggarwal OP. Pattern and distribution of ocular morbidity in primary school children of rural Delhi. Asia-Pac J Public Health Asia-Pac Acad Consort Public Health 1999;11:30-3.  Back to cited text no. 11
    
12.
Singh H. Pattern of ocular morbidity in school children in central India. Natl J Community Med 2011;2:429-31.  Back to cited text no. 12
    
13.
Wedner SH, Ross DA, Balira R, Kaji L, Foster A. Prevalence of eye diseases in primary school children in a rural area of Tanzania. Br J Ophthalmol 2000;84:1291-7.  Back to cited text no. 13
    
14.
Deshpande Jayant D, Malathi K. Prevalence of ocular morbidities among school children in rural area of North Maharashtra in India. Natl J Community Med 2011;2:302-4.  Back to cited text no. 14
    
15.
Prajapati P, Oza J, Prajapati J, Kedia G, Chudasama RK. Prevalence of ocular morbidity among school adolescents of Gandhinagar district, Gujarat. Online J Health Allied Sci [Internet]. 2011 [cited 2014 Sep 30]; 9. Available from: http://cogprints.org/7248/.  Back to cited text no. 15
    
16.
Naik R, Jaineel Gandhi D, Shah N. Prevalence of Ocular Morbidity among School Going Children (6-15 years). Sch J App Med Sci 2013;1:848-851  Back to cited text no. 16
    
17.
Kamath BP, Prasad BG, Deepthi R, Muninrayana C. Prevalence of ocular morbidity among school going children (6-15 years) in rural area of Karnataka, South India. Int J Pharm 2012;3:209-12.  Back to cited text no. 17
    
18.
Kalikivayi V, Naduvilath TJ, Bansal AK, Dandona L. Visual impairment in school children in southern India. Indian J Ophthalmol 1997;45:129-34.  Back to cited text no. 18
[PUBMED]  [Full text]  
19.
Indicators for assessing Vitamin A Deficiency and their application in monitoring and evaluating intervention programmes. Available from: http://www.who.int/nutrition/publications/micronutrients/ vitamin_a_deficiency/WHONUT96.10.pdf. [Last accessed on 2018 June 22]  Back to cited text no. 19
    
20.
Ministry of Health and Family Welfare. National Family Health Survey 3 (2005 06). State Fact Sheet Tamil Nadu. Available from: http://rchiips.org/NFHS/pdf/Tamil%20Nadu.pdf. [Last accessed on 2018 June 22]  Back to cited text no. 20
    
21.
Warkad VU, Panda L, Behera P, Das T, Mohanta BC, Khanna R. The Tribal Odisha Eye Disease Study (TOES) 1: Prevalence and causes of visual impairment among tribal children in an urban school in eastern India. J AAPOS 2018;22:145.e1-145.e6.  Back to cited text no. 21
    
22.
Reddy S, Panda L, Kumar A, Nayak S, Das T. Tribal Odisha Eye Disease Study #4: Accuracy and utility of photorefraction for refractive error correction in tribal Odisha (India) school screening. Ind J Ophthalmol 2018;66:929-33.  Back to cited text no. 22
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Methods
Results
Discussion
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed289    
    Printed2    
    Emailed0    
    PDF Downloaded67    
    Comments [Add]    

Recommend this journal