• Users Online: 56037
  • Home
  • Print this page
  • Email this page

   Table of Contents      
CASE REPORT
Year : 2020  |  Volume : 68  |  Issue : 1  |  Page : 216-218

Prenatal diagnosis of bilateral congenital microphthalmia in two fetuses from the same parents


1 Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, and Beijing Ophthalmology Visual Science Key Lab, Beijing; Department of Ophthalmology, Chaoyang Central Hospital, Chaoyang, Liaoning Province, China
2 Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, and Beijing Ophthalmology Visual Science Key Lab, Beijing, China
3 Department of Radiology, The Second Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei Province, China
4 Department of Ultrasound, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
5 Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China

Date of Submission17-Apr-2019
Date of Acceptance07-Aug-2019
Date of Web Publication19-Dec-2019

Correspondence Address:
Dr. Dongmei Li
Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology Visual Science Key Lab, 1# Dong Jiao Min Xiang, Beijing - 100730
China
Dr. Qingqing Wu
Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yaojia Yuan Rd, Chaoyang District, Beijing - 100026
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijo.IJO_750_19

Rights and Permissions
  Abstract 


Congenital microphthalmia (CM) is a rare anomaly of the fetal orbit, results from developmental defects of the primary optic vesicle, and is characterized by a reduced eyeball volume and axial diameter. Fetal CM cases have rarely been reported. Herein, we present a case of two fetuses with bilateral CM from the same parents, diagnosed using ultrasonography (US) and magnetic resonance imaging (MRI). We found that the antepartum US and MRI measurements were smaller than the postpartum ones. Genetic testing of the parents and fetuses revealed that GL12 gene mutation may be associated with CM.

Keywords: Congenital microphthalmia, magnetic resonance imaging, prenatal diagnosis, ultrasonography


How to cite this article:
Song D, Song H, Zhou L, Sun C, Wu Q, Li D. Prenatal diagnosis of bilateral congenital microphthalmia in two fetuses from the same parents. Indian J Ophthalmol 2020;68:216-8

How to cite this URL:
Song D, Song H, Zhou L, Sun C, Wu Q, Li D. Prenatal diagnosis of bilateral congenital microphthalmia in two fetuses from the same parents. Indian J Ophthalmol [serial online] 2020 [cited 2024 Mar 28];68:216-8. Available from: https://journals.lww.com/ijo/pages/default.aspx/text.asp?2020/68/1/216/273265



Congenital microphthalmia (CM), an eyeball defect, is caused by abnormal embryonic optic vesicle development and is characterized by a reduced eyeball volume and axial diameter. It is a rare congenital disease with an incidence rate of 0.7–1.9 cases per 10,000 persons, at birth, with an incidence rate of 0.22 per 10,000 persons for bilateral microphthalmia.[1],[2],[3] However, data concerning the diagnostic criteria for fetal CM remain limited. We present two rare cases of bilateral CM, involving the same parents, diagnosed using ultrasonography (US) and magnetic resonance imaging (MRI). Genetic testing was performed for both parents and fetuses.


  Case Report Top


This study was approved by the Ethics Committee of Beijing Tongren Hospital, Beijing, China (Approval no: TRECKY2018-005). A 31-year-old Chinese woman (gravida 1, para 0) at 22+1 weeks of gestation underwent abdominal US; bilateral CM of the fetus was suspected. Abdominal MRI (23 gestation weeks) was performed to confirm the diagnosis [Figure 1]a and [Figure 1]b. The pregnancy was terminated at parental request after MRI examination, the induced fetus (male) was examined, and CM was confirmed.
Figure 1: Prenatal ultrasonography (US) imaging of the first fetus. (a) Abdominal US: the inner canthal distance (D1) is long and the outer canthal distance (D2) is normal. The orbital margin diameters (D3 and D4) are small. (b) Abdominal magnetic resonance imaging: anterior–posterior ocular diameters (D1 and D2) are small

Click here to view


Eight months later, the woman became pregnant again. The abdominal US examinations during early pregnancy indicated fetal eye abnormalities. At 22 weeks of the pregnancy, based on abdominal US, bilateral CM was suspected. Abdominal MRI was performed to confirm the diagnosis. US (27+5 gestation weeks) and MR (26 gestation weeks) images are shown in [Figure 2]a, [Figure 2]b, [Figure 2]c, [Figure 2]d, respectively. The family received extensive counseling and decided on pregnancy termination at 27 weeks of gestation. The induced fetus (female) was examined and the diagnosis of CM was confirmed based on the following characteristics: short and narrow palpebral fissure length, shallow eye sockets, and small eyeballs [Figure 3]a and [Figure 3]b. With parental consent, binocular US and craniocerebral MRI were performed within an hour of induction [Figure 3]c and [Figure 3]d.
Figure 2: Prenatal ultrasonography (US) imaging of the second fetus. (a) Abdominal US: The inner canthal distance (D1) is long, and the outer canthal distance (D2) is normal, and the transverse ocular diameters (D3 and D4) are significantly small. (b) Three-dimensional abdominal US: the palpebral fissure lengths (D1 and D2) are significantly short. (c) Abdominal magnetic resonance imaging (MRI): the transverse ocular diameters (D1 and D2) are significantly small. (d) MRI examination: the anterior–posterior ocular diameters (D1 and D2) are significantly small

Click here to view
Figure 3: Ocular images of the second induced fetus. (a) The palpebral fissure length (9.0 mm) is significantly short, the inner canthal distance (23.0 mm) is long, and the outer canthal distance (46.0 mm) is normal. (b) Shallow eye sockets with small eyeballs. (c) US showing smaller eyeballs (D1, D2, D3, and D4). (d) Magnetic resonance images confirm the diagnosis of CM (D1, D2, D3, and D4)

Click here to view


Genetic testing in the parents and two fetuses involved extracting DNA from parental blood and fetal skin tissue, respectively, identifying a heterozygous mutation (c. 1532C > G; p.S511W) in GL12, derived from the father. The parents were healthy, and no maternal history of antenatal drug use or X-ray exposure was noted. The parents denied consanguineous marriage or family history of eye malformations. The babies did not show any systemic malformations, including cardiac defects, facial clefts, microcephaly, or hydrocephaly.


  Discussion Top


This is a report of two fetuses with bilateral CM, from the same parents, diagnosed using US and MRI. To date, the universal diagnostic criterion for neonatal CM is an axial length of ≤20.0 mm.[4] However, data concerning the diagnostic criteria for fetal CM remain limited. Denis et al.[5] analyzed 108 “normal” fetuses from spontaneous and therapeutic abortions and obtained the mean palpebral fissure length, inner and outer canthal distances, and the axial length of the eyeball (11.71 ± 1.02 mm at 23–25 weeks) at different weeks of gestation. According to the current international US protocols, a diagnosis of CM is rendered when the axial diameter of the eyeball is less than 2 standard deviations below the mean using prenatal US.[6] The eyeball size of the two aborted fetuses was significantly smaller than that observed in gestational age-matched normal fetuses.

CM can have serious effects on orbitofacial development.[7] An ocular examination of the second fetus revealed a short palpebral fissure length, long inner canthal distance, and an outer canthal distance within the normal range, consistent with the ophthalmic features of children with CM. The axial lengths of bilateral eyeballs of the first (23 gestational weeks) and second (27 gestational weeks) fetuses were similar, suggesting that eyeball development of fetuses with CM occurs at early gestational ages. Eyeball development was retarded or inactive at the middle and late gestational ages.

Chromosomal abnormalities, mutations, infection, and antenatal drug exposure are the common underlying causes of CM.[5],[8] Bilateral CM has an incidence rate of 0.22 per 10,000 persons. CM is usually associated with systemic abnormalities (50%–90%)[6] and differential diagnoses of CM include anophthalmos, microcornea, and eyeball atrophy. In the present case, imageological examination and autopsy revealed isolated bilateral microphthalmia without any systemic malformations in the infant siblings. Moreover, the father and the two fetuses had a heterozygous mutation in GL12. Although previously unreported, our results reveal that GL12 mutation may be associated with CM.

Prenatal abdominal US is useful for screening fetal CM. However, its accuracy may be affected by gestational age, fetal position, movements, or other factors. MRI is considered safe in the second and third trimesters;[9] unaffected by gestational age, fetal position, or amniotic fluid; and provides more detailed images for detecting ocular abnormalities. Thus, a detailed, targeted MRI with a specific focus on the orbital region should be offered for cases presenting with abnormal prenatal abdominal US. Fetal CM diagnosed with MRI can form a basis for pregnancy termination with mutual consent of the spouses.[10] In our case report, repeated abdominal US during the second trimester of pregnancy were suggestive of CM. Consequently, considering the health of the mother, early pregnancy termination was recommended; however, the parents were hesitant. Both cases were confirmed by MRI, and the parents ultimately made the decision to end the pregnancy. Therefore, clear MR images are conducive to diagnosing CM. The antepartum US and MRI measurements were approximately 25% smaller than the postpartum measurements, suggesting that antepartum measurements must be adjusted for more accurate estimation of eyeball size.


  Conclusion Top


This study revealed that prenatal US screening combined with MRI is a reliable method for diagnosing fetal CM.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

This work was supported by Capital's Funds for Health Improvement and Research (grant number: 2018-2-2053).

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Shaw GM, Carmichael SL, Yang W. Epidemiologic characteristics of anophthalmia and bilateral microphthalmia among 2.5 million births in California, 1989-1997. Am J Med Genet A 2005;137:36-40.  Back to cited text no. 1
    
2.
Kallen B, Tornqvist K. The epidemiology of anophthalmia and microphthalmia in Sweden. Eur J Epidemiol 2005;20:345-50.  Back to cited text no. 2
    
3.
Yeom W, Kim MN, Choi SJ. Hyperplastic primary vitreous with hemorrhage manifested as a hyperechoic mass in the fetal orbit by prenatal ultrasound in a case of isolated unilateral microphthalmia. Obstet Gynecol 2015;58:309-13.  Back to cited text no. 3
    
4.
Verma AS, Fitzpatrick DR. Anophthalmia and microphthalmia. Orphanet J Rare Dis 2007;26:47-55.  Back to cited text no. 4
    
5.
Denis D, Burguiere O, Oudahi F. Measurement of facial growth in the human fetus. Graefes Arch Clin Exp Ophthalmol 1995;233:756-65.  Back to cited text no. 5
    
6.
Searle A, Shetty P, Melov SJ, Alahakoon TI. Prenatal diagnosis and implications of microphthalmia and anophthalmia with a review of current ultrasound guidelines: Two case reports. J Med Case Rep 2018;12:250.  Back to cited text no. 6
    
7.
Hou Z, Xian J, Li D. Digital evaluation of orbital development after self-inflating hydrogel expansion in Chinese children with congenital microphthalmia. J Plast Reconstr Aesthet Surg 2016;69:706-14.  Back to cited text no. 7
    
8.
Ragge NK, Subak-Sharpe ID, Collin JR. A practical guide to the management of anophthalmia and microphthalmia. Eye (Lond) 2007;21:1290-300.  Back to cited text no. 8
    
9.
Kok RD, de Vriesa MM, Heerschapb A, van den Berga RP. Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: A follow-up study. Mag Res Imag 2004;22:851-4.  Back to cited text no. 9
    
10.
Paquette L, Randolph L, Incerpi M. Fetal microphthalmia diagnosed by magnetic resonance imaging. Fetal Diagn Ther 2008;24:182-5.  Back to cited text no. 10
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]


This article has been cited by
1 The growth and shape of the eyeball and crystalline lens in utero documented by fetal MR imaging
Yingying Hong, Li Ning, Yang Sun, Huijun Qian, Yinghong Ji
Heliyon. 2023; : e12885
[Pubmed] | [DOI]
2 Correlation Between the Computed Tomography and 3D Scanning System-Based Periorbital Morphology of Children with Congenital Microphthalmia
Xue Jiang, Bowei Yuan, Lan Ma, Ju Zhang, Dongmei Li
Seminars in Ophthalmology. 2023; : 1
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Case Report
Discussion
Conclusion
References
Article Figures

 Article Access Statistics
    Viewed2094    
    Printed45    
    Emailed0    
    PDF Downloaded165    
    Comments [Add]    
    Cited by others 2    

Recommend this journal