Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 1976
  • Home
  • Print this page
  • Email this page

   Table of Contents      
BRIEF COMMUNICATION
Year : 2012  |  Volume : 60  |  Issue : 1  |  Page : 66-68

Microperimetry and optical coherence tomography in a case of traumatic macular hole and associated macular detachment with spontaneous resolution


Department of Vitreo-Retinal Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110 029, India

Date of Submission11-Apr-2010
Date of Acceptance04-Jan-2011
Date of Web Publication30-Dec-2011

Correspondence Address:
Lalit Aalok
Vitreo-Retina Services, Room 485, Fourth Floor, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0301-4738.91353

Rights and Permissions
  Abstract 

The association of macular detachment with posttraumatic macular hole is a known but rare occurrence. Spontaneously occurring resolution of the detachment and closure of the macular hole has been reported only once in the literature. We describe a similar rare event in a young male, the documentation of which was done serially by microperimetry (MP) and optical coherence tomography (OCT). A 17-year-old male presented with a decrease in vision following a closed globe injury to the left eye. A coexisting macular hole and macular detachment were detected in the affected eye. Serial follow-up with OCT and MP documented complete resolution of the macular hole and the macular detachment within 1 week of presentation. The case highlights that spontaneous resolution of traumatic macular hole and related macular detachment may occur and a waiting period is advisable before undertaking any corrective surgical procedure. The pathophysiologic mechanisms of causation and the resolution of posttraumatic macular hole-related retinal detachment are discussed.

Keywords: Microperimetry, optical coherence tomography, retinal detachment, spontaneous resolution, traumatic macular hole


How to cite this article:
Aalok L, Azad R, Sharma YR, Phuljhele S. Microperimetry and optical coherence tomography in a case of traumatic macular hole and associated macular detachment with spontaneous resolution. Indian J Ophthalmol 2012;60:66-8

How to cite this URL:
Aalok L, Azad R, Sharma YR, Phuljhele S. Microperimetry and optical coherence tomography in a case of traumatic macular hole and associated macular detachment with spontaneous resolution. Indian J Ophthalmol [serial online] 2012 [cited 2020 Nov 25];60:66-8. Available from: https://www.ijo.in/text.asp?2012/60/1/66/91353

Traumatic macular holes (MHs) were first described by Knapp in 1869. [1] While retinal detachments (RDs) associated with nontraumatic MHs usually occur in highly myopic eyes, and can be effectively treated surgically, those arising from traumatic MHs occur rarely, and clear management guidelines are therefore lacking. [2],[3],[4] Our case demonstrates that spontaneous resolution of the RD along with MH closure is possible in traumatic eyes.


  Case Report Top


A 17-year-old boy sustained blunt trauma from a tennis ball to his left eye, 5 h before examination. Only hand movements were perceivable and projection of light rays was accurate. The vision in the right eye was 20/20. Clinically, a full-thickness MH, sized 415 μm, with coexistent macular detachment of height 458 μm on optical coherence tomography (OCT) examination (Stratus OCT, Carl Zeiss Meditec Inc., USA), was detected along with commotio retinae and widespread subretinal hemorrhages of the posterior pole and inferior retina [Figure 1]a and b. A curvilinear choroidal rupture was present inferior to the fovea. Peripheral retinal breaks were absent. Examination by microperimetry (MP-1, Nidek Technologies SRL, Italy) demonstrated reduced sensitivity of the macula to high-intensity light stimuli [Figure 1]c. Surgical intervention was contemplated. However, follow-up examination 3 days later surprisingly revealed that the MH had reduced in size to 218 μm. The height of the macular detachment had decreased to 420 μm [Figure 1]d and e. Visual acuity showed no change however. Careful serial follow-up found complete closure of the MH and near complete resolution of the macular detachment 7 days after presentation [Figure 2]a and b. Three weeks posttrauma, the chorioretinal scarring and pigmentary changes at the macula were very prominent [Figure 2]d. Significant atrophy and thinning of all the retinal layers was evident on OCT examination; the foveal thickness was 82 μm [Figure 2]e. Large atrophic holes were noticed at this time in the inferior retina and were delimited by laser photocoagulation [Figure 2]f. Subsequent microperimetry examinations were similar to earlier ones. The visual evoked potential was similar in both eyes. Best corrected visual acuity in the affected eye after 6 months was 20/1200.
Figure 1: Posttraumatic macular hole-associated retinal detachment. Fundus photograph (a) and optical coherence tomography image (b). Microperimetry, done with four-cross target because of poor fixation, reveals loss of perceived stimuli at the macula (c). The macular hole is smaller and the detachment shallower after 3 days (d and e). Microperimetry shows absolute scotoma (f)

Click here to view
Figure 2: Seven days later, the macular hole is closed and the subretinal fluid nearly completely absorbed (a and b). Examination by microperimetry remained the same (c). Three weeks later, the chorioretinal scarring is very prominent (d and e). Large atrophic holes in the inferior periphery were laser delimited (f)

Click here to view



  Discussion Top


Two considerations relevant to the management of the present subject are, first, the mechanisms involved in the formation and closure of the traumatic MH and detachment, and second, whether a waiting period is advisable before undertaking any surgical repair.

With respect to the first issue, the most important fact to understand is that the vitreous is very tightly adherent to the macula in young normal eyes, putting considerable stress upon this region when compression-expansion of the globe occurs in a concussion injury. [2],[5] Most eyes with a traumatic MH have an attached vitreous. [6],[7],[8] OCT imaging corroborates this finding lending credence to the belief that the pathogenesis of MH is independent of the occurrence of a posterior vitreous detachment (PVD) and occurs likely as an immediate mechanical disruption in a coup contrecoup injury. [7],[9] Delayed MH may however develop if PVD is incomplete, causing continued foveal traction, or due to contusion necrosis, or consequent to the formation and rupture of a foveal cyst. [5],[6],[7] A PVD was absent in our case and we believe that the hole occurred due to mechanical disruption as an immediate effect of concussion [Supplementary [Figure 1] [Additional file 1] and [Figure 2]] [Additional file 2]. A RD may occur due to the mechanical distortion that occurs between the retina and the vitreous; loss of the retinal pigment epithelial (RPE) function and the hyperpermeability of retinal vessels consequent to the retinochoroidal concussion injury may be the important contributing factors.

The mechanisms responsible for the spontaneous closure of a traumatic MH include proliferating glial cells and RPE cells from the edges that fill the hole; formation of an epiretinal membrane that constricts the hole; and reattachment of the operculum to the MH. [10] The mechanism of the reattachment of a coexisting RD is however unknown. There was no operculum or membrane formation in our case but we expect the proliferating potential of the recovering glial and RPE cells to be high in our patient, considering his young age, which eventually led to the closure of the MH. This mechanism is consistent with the histopathologic study of a surgically treated MH which was closed by bridging glial tissue. [11] A quick recovery of the RPE function in young eyes also ensures the rapid absorption of the subretinal fluid. The resolution of the RD, simultaneous to the closure of the MH seems necessary for the successful resolution of both pathologies. We observed these processes occurring concurrently in our patient, leaving anatomically resolved RD and MH within 7 days of presentation.

The time and need of surgical intervention is an open question with no available answer; MHs and RDs rarely arise simultaneously after trauma and therefore specific management guidelines are lacking. Traumatic MHs are known to close spontaneously and a period of observation till 6 months has been advised before undertaking a surgical repair. [7],[10] Chen et al. achieved retinal reattachment with the vitrectomy procedure and gas tamponade in seven patients out of eight who had traumatic MH-related RDs. [12] Recently, spontaneous resolution of a traumatic MH-related macular detachment, which occurred within 3 weeks, has been described in a young patient. [13] Our patient experienced a complete closure of the MH and resolution of the macular detachment 1 week after the incident of trauma, young age and a relatively small size of the hole apparently being the factors responsible for a better anatomical outcome. However, functional visual improvement failed to occur despite anatomical reattachment of the retina because of irreversible changes at the macula. One must understand that functional and anatomical results may not correlate depending on the severity of the trauma; the final VA depends upon the degree of photoreceptor and RPE cell disruption. Immediate visual loss after injury due to retinal dehiscence is followed by a delayed visual loss due to secondary changes in the retinochoroidal layer [Supplementary [Figure 3]] [Additional file 3]. Besides this, our case illustrates that the spontaneous reattachment of a traumatic MH-related macular detachment is possible and a clear evidence of progressive clinical improvement entails a waiting period in the expectation of a spontaneous recovery.

 
  References Top

1.
Knapp H. Ueber Isolirte zerreissungen der aderhaut infolge von traumen auf augapfel. Arch Augenheilkd 1869;1:6-29.   Back to cited text no. 1
    
2.
Margherio RR, Schepens CL. Macular breaks: Diagnosis, etiology and observations. Am J Ophthalmol 1972;74:219-32.   Back to cited text no. 2
    
3.
Cox MS, Schepens CL, Freeman HM. Ocular contusion and retinal detachment. Arch Ophthalmol 1966;76:678-85.  Back to cited text no. 3
    
4.
Ripandelli G, Parisi V, Friberg TR, Coppé AM, Scassa C, Stirpe M. Retinal detachment associated with macular hole in high myopia: Using the vitreous anatomy to optimize the surgical approach. th Ophthalmolo gy 2004;111:726-31.   Back to cited text no. 4
    
5.
Delori F, Pomerantzeff O, Cox MS. Deformation of the globe under high-speed impact: Its relation to contusion injuries. Invest Ophthalmol 1969;8:290-301.   Back to cited text no. 5
    
6.
Yanagiya N, Akiba J, Takahashi M, Shimizu A, Kakehashi A, Kado M, et al. Clinical characteristics of traumatic macular holes. Jpn J Ophthalmol 1996;40:544-7.  Back to cited text no. 6
    
7.
Yamashita T, Uemara A, Uchino E, Doi N, Ohba N. Spontaneous closure of traumatic macular hole. Am J Ophthalmol 2002;133:230-5.  Back to cited text no. 7
    
8.
Johnson RN, McDonald HR, Lewis H, Grand MG, Murray TG, Mieler WF, et al. Traumatic macular hole: Observations, pathogenesis, and results of vitrectomy surgery. Ophthalmology 2001;108:853-7.  Back to cited text no. 8
    
9.
Wolter JR. Coup-contrecoup mechanism of ocular injuries. Am J Ophthalmol 1963;56:785-96.  Back to cited text no. 9
    
10.
Yamada H, Sakai A, Yamada E, Nishimura T, Matsumura M. Spontaneous closure of traumatic macular hole. Am J Ophthalmol 2002;134:340-7.  Back to cited text no. 10
    
11.
Rosa RH Jr, Glaser BM, de la Cruz Z, Green WR. Clinicopathologic correlation of an untreated macular hole and a macular hole treated with vitrectomy, transforming growth factor-â2, and gas tamponade. Am J Ophthalmol 1996;122:853-63.  Back to cited text no. 11
    
12.
Chen YP, Chen TL, Chao AN, Wu WC, Lai CC. Surgical management of traumatic macular hole- related retinal detachment. Am J Ophthalmol 2005;140:331-3.  Back to cited text no. 12
    
13.
Lai MM, Joshi MM, Trese MT. Spontaneous resolution of traumatic macular hole-related retinal detachment. Am J Ophthalmol 2006;141:1148-51.  Back to cited text no. 13
    


    Figures

  [Figure 1], [Figure 2]


This article has been cited by
1 SPONTANEOUS RESOLUTION OF A POSTVITRECTOMY MACULAR HOLE RETINAL DETACHMENT
Mrinali Patel,Demetrios G. Vavvas
Retinal Cases & Brief Reports. 2014; 8(3): 161
[Pubmed] | [DOI]
2 Secondary macular holes: when to jump in and when to stay out
Dhananjay Shukla
Expert Review of Ophthalmology. 2013; 8(5): 437
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Case Report
Discussion
References
Article Figures

 Article Access Statistics
    Viewed3435    
    Printed53    
    Emailed1    
    PDF Downloaded213    
    Comments [Add]    
    Cited by others 2    

Recommend this journal