• Users Online: 2415
  • Home
  • Print this page
  • Email this page

   Table of Contents      
Year : 2015  |  Volume : 63  |  Issue : 7  |  Page : 575-581

Update on wide- and ultra-widefield retinal imaging

1 The Eye Center and The Eye Foundation for Research in Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
2 King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia; Retina Division, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
3 King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia

Date of Submission18-Dec-2014
Date of Acceptance24-Jun-2015
Date of Web Publication12-Oct-2015

Correspondence Address:
Dr. Igor Kozak
Vitreoretinal and Uveitis Division, King Khaled Eye Specialist Hospital, P.O. Box 7191, Riyadh 11462
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0301-4738.167122

Rights and Permissions

The peripheral retina is the site of pathology in many ocular diseases and ultra-widefield (UWF) imaging is one of the new technologies available to ophthalmologists to manage some of these diseases. Currently, there are several imaging systems used in practice for the purpose of diagnostic, monitoring disease progression or response to therapy, and telemedicine. These include modalities for both adults and pediatric patients. The current systems are capable of producing wide- and UWF color fundus photographs, fluorescein and indocyanine green angiograms, and autofluorescence images. Using this technology, important clinical observations have been made in diseases such as diabetic retinopathy, uveitides, retinal vascular occlusions and tumors, intraocular tumors, retinopathy of prematurity, and age-related macular degeneration. Widefield imaging offers excellent postoperative documentation of retinal detachment surgery. New applications will soon be available to integrate this technology into large volume routine clinical practice.

Keywords: Retina, ultra-widefield retinal imaging, widefield retinal imaging

How to cite this article:
Shoughy SS, Arevalo J F, Kozak I. Update on wide- and ultra-widefield retinal imaging. Indian J Ophthalmol 2015;63:575-81

How to cite this URL:
Shoughy SS, Arevalo J F, Kozak I. Update on wide- and ultra-widefield retinal imaging. Indian J Ophthalmol [serial online] 2015 [cited 2023 Dec 4];63:575-81. Available from: https://journals.lww.com/ijo/pages/default.aspx/text.asp?2015/63/7/575/167122

The peripheral retina is the site of pathology in many ocular diseases such as diabetic retinopathy (DR), retinal vein occlusions, uveitis, vasculitis, choroidal and retinal masses, retinal tears, and detachments. While careful clinical examination of patient's peripheral retina with scleral indentation is of utmost importance in clinical decision making, there is a need for additional testing and an objective and reliable documentation of findings. Recent advances in the development of diagnostic imaging techniques have played an increasing role in better assessment of retinal periphery. Ultra-widefield (UWF) imaging is one of the new technologies available to retinal specialists. Current UWF imaging modalities can provide several options for posterior segment documentation and evaluation, including options for color images, red-free images, fluorescein and indocyanine green angiography, and fundus autofluorescence.[1],[2] Data from these modern imaging devices has truly changed the way ophthalmologists evaluate a patient picture and has led to more understanding of the role of the peripheral pathology in retinal diseases.

  Evolution of Ultra-Widefield Imaging Technology Top

The first reliable fundus camera, which allowed documentation of ocular fundus structures, was introduced by Carl Zeiss and J.W. Nordensen in 1926. This camera provided a 20° fundus image. Years later, Carl Zeiss Company expanded the field of view to 30° which became the standard for the traditional fundus camera.[3] This field of view obtained with traditional fundus cameras was adequate for imaging of the optic nerve and the posterior pole but provided a limited view of the retinal periphery. A protocol consisting of 7-standard 30° images was developed by the DR study for acquiring images of the retinal periphery in a systematic manner. The width of these composite images is approximately 75°. Photographs anterior to the equator may be obtained with this protocol, but they will not image structures in the far periphery.[4] This approach was extended to 9-standard fields protocol for the longitudinal studies of ocular complications of AIDS protocol to capture peripheral cytomegalovirus retinitis. Per specifications of the Fundus Photography Reading Center at the University of Wisconsin, retinal cameras approved for this procedure had 50° or 60° magnification settings. Such photography, however, may be limited by patient alignment problems, focusing irregularities, marginal corneal astigmatism, poor fixation, and light reflex artifacts [5] [Figure 1].
Figure 1: A mosaic fundus photo of the right eye of a 42-year-old female with advanced retinitis pigmentosa showing waxy pallor of the optic nerve head, attenuated retinal blood vessels, numerous bone spicule-like formations approaching the vascular arcades. White arrow points to a blood vessel shadow, an artifact during image alignment

Click here to view

Since that time, several advances have been made to posterior segment imaging that permit visualization of the retinal periphery in a practical manner. Equator-plus camera is a specialized contact lens-based camera that was developed in 1975 by Pomerantzeff. A fiber optic illumination was separated from the camera to minimize lens reflections and obtain a 148° capture from the retina anterior to the equator.[6] The Retcam (Clarity Medical Systems, Pleasanton, California, USA) is a portable wide-angle camera system that was made commercially available in 1997. It is a contact-based, coaxial illumination system which obtains 130° field of view.[7] The system is particularly well-suited for imaging pediatric patients because it is portable and can be placed directly on patients unable to position themselves, such as neonates and infants [Figure 2]a and [Figure 2]b. Specifically, this imaging modality has been well-studied in patients with retinopathy of prematurity. A major limitation in this technology, however, was its inability to image through lens opacities.[7]
Figure 2: (a) A widefield fundus image of the right eye of a 3-month-old infant with dysplastic optic nerve head, intraretinal, and vitreous hemorrhages (RetCam, Pleasanton, CA, USA), (b) fluorescein angiography of the same eye as in Figure 2a taken with the same imaging system showing retinal blood vessels filling, blockage from intraretinal hemorrhage (white arrowhead) and staining (white arrow)

Click here to view

A major cause of artifact with any fundus imaging arises from the reflection of light from interfaces in the ocular media. Elimination of these reflections is achieved using confocal scanning laser ophthalmoscopy (SLO), which separates the illuminating and imaging beam within the eye.[5]

Staurenghi et al. developed a combined contact and noncontact handheld lens system coupled with a SLO. The Staurenghi lens system. lens system obtained high-resolution images with a 150° field. However, this technique was cumbersome for the photographer [Figure 3].[8]
Figure 3: A widefield infrared image of the left eye of a 46-year-old man with macular coloboma of unknown origin. An image taken with noncontact lens (Heidelberg Engineering, Heidelberg, Germany) showing peripapillary atrophy, thin retinal blood vessels, and a well-defined choroidal vasculature

Click here to view

The Optos camera (Optos 200Tx, Dunfermline, UK) is a UWF imaging system, which produces a 200° view of the retina (about 82% of the surface area). The Optos technology utilizes a combined SLO with an ellipsoidal mirror to obtain images of the retinal periphery with one capture without the need for bright illumination lighting or a contact lens, and in some patients, pupillary dilation. The system provides the ability to capture red and green reflectance imaging, as well as fundus autofluorescence, and fluorescein/indocyanine green angiography [Figure 4]a and [Figure 4]b.[9] Widefield imaging of the vitreous is now possible with the introduction of a biomicroscopic wide-angle retinal and vitreous observation system utilizing a 3 CCD video camera and a personal computer for image display by Lee and Chang [Figure 5] and [Figure 6].[10] Finally, optical coherence tomography (OCT) technology is making progress toward examining wider areas of the retina. The systems have now expanded from 30° to 55° (Heidelberg Spectralis system, Heidelberg Engineering, Germany). With moving of the scan toward the periphery, some areas can be visualized that were previously unreachable for OCT imaging.[11] Following is a review of wide- and UWF imaging application in some retinochoroidal diseases.
Figure 4: (a) An ultra-widefield color fundus photo of the right eye of a 36-year-old patient with a history of pars planitis in both eyes. The image was taken with an ultra-wide imaging system (Optos 200Tx, Dunfermline, UK). Dark shadows in the central field represent vitreous opacities. There is a sclerotic retinal vessel in the nasal periphery (white arrow) in the area of prior inflammation, (b) an ultra-widefield fluorescein angiogram of the same eye as in Figure 4a showing central vitreous opacities and staining of the peripheral retinal vessel (white arrowhead)

Click here to view
Figure 5: An ultra-widefield color fundus photo of an eye with proliferative diabetic retinopathy taken with slit-lamp and three-dimensional CCD camera. Inverted image shows preretinal hemorrhage inferiorly and scattered laser photocoagulation burns

Click here to view
Figure 6: An ultra-widefield color fundus photo of the left eye with high myopia taken with slit-lamp and three-dimensional CCD camera. Inverted image shows rarefaction of the retinal pigment epithelium and patches of chorioretinal atrophy in the posterior pole

Click here to view

  Diabetic Retinopathy Top

DR is a common complication of diabetes mellitus. It is one of the leading causes of blindness among adults and is estimated to be responsible for up to 17% of total blindness.[12],[13] Diabetic macular edema (DME) is a major cause of vision loss among diabetic patients.[14],[15] Ischemic changes and microvascular abnormalities in patients with DR have long been hypothesized to play a role in the development of DME. Ischemia stimulates the production of vascular endothelial growth factor (VEGF), which can lead to the breakdown of blood-retinal barriers, and development of macular edema.[16],[17] Accordingly, ischemic changes in the peripheral retina may induce macular edema. Several studies have demonstrated the association between peripheral retinal nonperfusion and the occurrence of neovascularization (NV) and DME.[18],[19] Conventional fluorescein angiography (FA) employs retinal photography that is able to view approximately 30° of the retina at 1 time, and hence missing the peripheral retina. With the advent of ultra-widefield fluorescein angiography (UWFA), it is now possible to view up to 200° of the retina in a single photograph measured from the ocular center. The ability to image the peripheral retina using UWFA provides a more comprehensive assessment of the extent of a retinal disease process, and may lead to detection of abnormalities that may alter treatment plans and give new insights into the pathogenesis of DME [Figure 7].[1] New treatment modalities, like targeted retinal photocoagulation (TRP) may be effective for treatment of DME. It has been suggested that TRP may replace pan-retinal photocoagulation by directing therapy specifically at ischemic parts of the retina to precisely eliminate the source of VEGF, thus minimizing the sequelae of pan-retinal photocoagulation.[20] In addition, the combination of macular laser and anti-VEGF therapy, and TRP could prove to be an important treatment modality for DME. Despite the significant correlation of retinal ischemia with DME in patients with DR, Wessel et al. failed to detect an association between the amount of retinal ischemia and the degree of macular thickening.[21] In addition to the implication of UWFA in the management of DME, identification of specific areas of retinal nonperfusion with UWFA may allow targeted rather than pan photocoagulation in the treatment of NV.[22] If more laser is required it can at least be applied in a step-wise logical manner. This approach can minimize laser-induced side effects such as field loss and macular edema.[5] A recent study evaluated the efficacy of UWFA in the detection of diabetic pathology found that it was able to demonstrate retinal nonperfusion and NV in 10% of eyes that would have been missed by standard FA.[21]
Figure 7: An ultra-widefield fluorescein angiogram of the left eye of a 54-year-old diabetic patient. The images show leakage in the macular area, peripheral areas of nonperfusion, and neovascularization nasally

Click here to view

  Uveitis Top

The diagnosis of posterior uveitis is challenging. Accurate diagnosis often requires careful clinical examination of the retinal periphery as posterior uveitis is associated with significant changes in this region. Management plans depend on the clinical appearance and angiographic pattern of the retinal lesions. Significant retinal findings are likely to be missed by conventional FAs but can be visualized using UWFA.[23] Kaines et al. noted that the high-resolution images obtained with UWF technology allowed clear identification of peripheral retinal lesions and greatly enhanced objective documentation of disease activity and progression. Similar to cases of DR, UWF imaging allowed clear visualization of the areas of NV and peripheral nonperfusion, leading to limited sector pan-retinal photocoagulation, and hence minimizing complications.[5] The added information provided by the UWF images may alter management decisions compared with the standard examination and conventional imaging. Such difference most likely is attributed to peripheral retinal imaging and angiographic findings are not easily identified without widefield imaging.[24] UWF fundus autofluorescence imaging was helpful in monitoring areas of old or new retinal inflammatory activity in patients with uveitis. It revealed areas of focal loss of autofluorescence that were in high concordance with visual field testing results, which showed deep scotomas.[25]

Similarly, UWF imaging may allow earlier detection of disease activity in patients with noninfectious vasculitis, which may lead to earlier treatment and perhaps better patient outcomes [Figure 8].[26] Leakage from retinal vessels may be seen before there are obvious ophthalmoscopic signs of vasculitis. In some cases of retinal vasculitis, the vessels anterior to the equator may be involved and cause peripheral leakage, ischemia, and NV, which are difficult to detect clinically. Accordingly, visualization of the peripheral retina could be essential to the diagnosis, monitoring, and treatment of retinal vasculitis.[26] Mesquida et al. assessed the role of UWF retinal imaging in the diagnosis and management of retinal vasculitis associated with Behçet disease.[27] They found that UWF retinal imaging had allowed clear documentation of peripheral retinal lesions and greatly simplified longitudinal comparisons for disease activity and progression. Peripheral vein sheathing and retinal infiltrates that denote disease activity were clearly detected with UWF pseudocolor imaging in their study. They also found that UWFA seems to evaluate precisely the early and subclinical retinal involvement. UWFA was a very helpful tool in their patients for determining whether the vasculitis had an occlusive nature and for quantifying the true extent of the capillary nonperfusion. Areas of retinal ischemia and NV were easily identified in their series, aiding targeted laser photocoagulation. The findings of the study also suggested that active retinal vasculitis in patients with Behçet disease may induce retinal epithelium alterations in the retinal periphery. These abnormalities were visible with UWF fundus autofluorescence as multiple hyper fluorescent spots in the retinal periphery.[27]
Figure 8: An ultra-widefield fluorescein angiogram of the eyes of a 34-year-old patient with a history of chronic Vogt–Koyanagi–Harada syndrome. The images of right eye (left panel) and left eye (right panel) show disturbance and hyperfluorescence of the retinal pigment epithelium

Click here to view

  Retinal Vein Occlusion Top

Retinovascular occlusive disease is a very common indication for wide and UWF imaging [Figure 9]. Prasad et al. evaluated the use of UWFA to study the peripheral angiographic features of branch retinal vein occlusions (BRVO) and hemicentral retinal vein occlusions (HRVO). They found that UWFA may provide visualization of peripheral retinal pathology in BRVO and HRVO patients, which may be useful in their evaluation and treatment. They suggested that areas of untreated retinal nonperfusion may be the source of production of biochemical mediators that promote NV and macular edema. Accordingly, they concluded that UWFA may be a powerful tool to identify therapeutic target areas for photocoagulation, allowing for efficient treatment of ischemic retina, and potentially minimizing collateral destruction of adjacent viable perfused retina.[28] A study by Tsui et al.[29] has identified an ischemic index in retinovascular occlusions which describe a ratio of nonperfused retina over the whole retinal area measured manually from ultra-wide angle FAs.
Figure 9: An ultra-widefield color fundus photo of the left eye of a 60-year-old patient with central retinal vein occlusion. The image shows intraretinal hemorrhages in all retinal quadrants

Click here to view

  Age-Related Macular Degeneration Top

Age-related macular degeneration (AMD) is the leading cause of irreversible central vision loss among the elderly population and seriously compromises their quality of life. The vast majority of AMD-related vision loss results from exudative AMD, characterized by invasion of blood vessels into the subretinal space.[30],[31] AMD is a multifactorial disease. The pathogenesis of AMD is complex with genetic, degenerative, and environmental predisposing factors. Hypoxia and ischemia are thought to play a role in the progression of AMD to neovascular AMD.[32] It is possible that peripheral retinal ischemia may contribute significantly to an abnormal angiogenic drive, mediated primarily by VEGF.[33] In a recent study by Madhusudhan and Beare, peripheral leakage, as indicated on UWFA, was noted to be associated with active neovascular AMD in a proportion of patients compared to the fellow eyes without active neovascular AMD. However, the authors found that the association between peripheral retinal nonperfusion and neovascular AMD was not significant.[32] Further studies to evaluate the significance of the abnormal findings in the peripheral retina in patients with AMD are required to improve our understanding of the pathogenesis of the disease. In a prospective study that was conducted to characterize peripheral fundus autofluorescence abnormalities in patients with AMD, significant risk factors for peripheral autofluorescence abnormalities were neovascular AMD compared with nonneovascular AMD and normal eyes, older age, and female sex. These findings may contribute to more understanding of the pathogenesis and the prognosis of the disease.[33]

  Retinopathy of Prematurity Top

UWFA images showed clear views of the different stages of ROP features at the posterior pole and peripheral retina. With the help of UWFA images, regression of ROP features was identified, following laser and intravitreal bevacizumab treatment. In addition, it was made possible that the "skip areas" that were missed by initial laser treatment could be identified in the peripheral retina and managed accordingly.[34]

  Choroidal Melanoma Top

Choroidal melanoma is the most common primary malignant ocular neoplasm in adults. It metastasizes into several organs and metastasis may occur before the primary tumor is diagnosed.[35] Therefore, early detection is essential. Clinical differentiation of malignant melanoma from benign choroidal nevus may be difficult. Shields et al. identified five predictive clinical features in order to help clinicians better differentiate small malignant melanoma from a benign choroidal nevus. These included: Tumor thickness > 2 mm, presence of subretinal fluid, clinical symptoms, orange pigment overlying the surface of the tumor, and tumor margins touching or being located within 3 mm of the optic disc.[36]

Reznicek et al. obtained images using UWF technology for more accurate evaluation of the criteria established by Shields et al. such as evaluation of location of the lesion in relation to the optic nerve, subretinal fluid, and maximal horizontal and vertical diameter. In addition they found, that the mean fundus autofluorescence intensity of melanomas was significantly lower than the autofluorescence of choroidal nevi and this combined with clinical criteria, and UWF images may help in the differential diagnosis.[37] In addition, measurements of the size of pigmented choroidal lesions using UWF imaging were found to be reasonably correlated with ultrasound measurements.[38]

  Coats' Disease Top

Coats' disease is an idiopathic, retinal vascular abnormality of young males characterized by telangiectatic retinal vessels with aneurysms [Figure 10]. Abnormal permeability of these vessels leads to exudative retinal detachment and subretinal lipid deposits. Often, subfoveal exudation leading to permanent severe vision loss occurs prior to the presentation. The severe forms of the disease often involve neovascular glaucoma and phthisis bulbi.[39],[40] UWF fundus photography and angiography can be used successfully as an outpatient procedure in the pediatric patient population without the necessity of examination under anesthesia and can aid the physician in the documentation and evaluation of Coat's disease.[41]
Figure 10: An ultra-widefield color fundus photo of the right eye of a 13-year-old male with Coat's disease showing both peripheral and central retinal involvement. Laser photocoagulation was applied to ablate telangiectatic retinal vessels, which led to reduction in exudation

Click here to view

  Von Hippel-Lindau Disease Top

Von Hippel–Lindau disease (VHL) is an autosomal dominant inherited systemic cancer syndrome that gives rise to cystic and highly vascularized tumors in many organs, including the eye.[42] Patients with VHL are at increased risk of developing central nervous system and retinal hemangioblastomas, clear cell renal carcinoma, pheochromocytomas, neuroendocrine tumors and cysts of the pancreas, endolymphatic sac tumors, papillary cystadenomas of the epididymis, and broad ligament.[43] Retinal hemangioblastomas, present in up to 85% of individuals with VHL, are the most common lesion of VHL disease.[44]

  Retinal Detachment Top

UWF autofluorescence imaging may reveal abnormalities in the rhegmatogenous retinal detachment that allow excellent demarcation of the extent of the retinal detachment and assist in the preoperative characterization of the detachment and may help in postoperative counseling [Figure 11].[45] It may also be useful in documenting multiple foci of exudative detachment and response to treatment as well as for patient education.
Figure 11: An ultra-widefield color fundus photo of the right eye of a 37-year-old patient with rhegmatogenous retinal detachment. There is inferior retinal detachment with large breaks in the inferotemporal periphery (white arrow)

Click here to view

  Future Directions Top

Imaging of the peripheral retina has significantly improved over the past years. Widefield technology has become important clinically with regards to early diagnosis, effective treatment, and monitoring of most sight-threatening retinal diseases. In the future, widefield imaging may have significant utility as a research tool particularly for evaluating new treatment approaches. It is likely that with additional time, the full utility of widefield imaging will be revealed, and this may enable more rapid progress in understanding retinal pathology. Advancements in telemedicine methods and the development of portable fundus cameras have increased the accessibility of retinal imaging, but most of these approaches rely on separate computers for viewing and transmission of fundus images. Recently, a novel portable handheld smartphone-based retinal camera capable of capturing high-quality, widefield fundus images was developed. The use of the mobile phone platform creates a fully embedded system capable of acquisition, storage, and analysis of fundus images that can be directly transmitted from the phone via wireless telecommunication system for remote evaluation.[46] Telemedicine programs have shown that nonphysician operators can be trained to obtain images for remote expert interpretations.[47] Photographic documentation can also be a valuable asset for medico-legal and educational purposes.[48]

A significant amount of work is going on to validate and expand the utilization of UWF imaging. Not so far in the future, we believe that UWF imaging technology will be indispensable for the routine daily retina practice.

Financial support and sponsorship


Conflict of interest

There are no conflict of interest.

  References Top

Tan CS, Sadda SR, Hariprasad SM. Ultra-widefield retinal imaging in the management of diabetic eye diseases. Ophthalmic Surg Lasers Imaging Retina 2014;45:363-6.  Back to cited text no. 1
Pang CE, Shah VP, Sarraf D, Freund KB. Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy. Am J Ophthalmol 2014;158:362-71.e2.  Back to cited text no. 2
Ciardella A, Brown D. Wide field imaging. In: Agarwal A, editor. Fundus Fluorescein and Indocyanine Green Angiography: A Textbook and Atlas. New York: Slack Inc.; 2007. p. 79-83.  Back to cited text no. 3
Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy. Invest Ophthalmol Vis Sci 1981;21(1 Pt 2):1-226.  Back to cited text no. 4
Kaines A, Oliver S, Reddy S, Schwartz SD. Ultrawide angle angiography for the detection and management of diabetic retinopathy. Int Ophthalmol Clin 2009;49:53-9.  Back to cited text no. 5
Pomerantzeff O. Equator-plus camera. Invest Ophthalmol 1975;14:401-6.  Back to cited text no. 6
Roth DB, Morales D, Feuer WJ, Hess D, Johnson RA, Flynn JT. Screening for retinopathy of prematurity employing the retcam 120: Sensitivity and specificity. Arch Ophthalmol 2001;119:268-72.  Back to cited text no. 7
Staurenghi G, Viola F, Mainster MA, Graham RD, Harrington PG. Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system. Arch Ophthalmol 2005;123:244-52.  Back to cited text no. 8
Witmer MT, Parlitsis G, Patel S, Kiss S. Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®). Clin Ophthalmol 2013;7:389-94.  Back to cited text no. 9
Lee BR, Chang HR. Biomicroscopic vitreous observation using a 3 CCD video camera and a personal computer for image capture and archiving. Korean J Ophthalmol 2000;14:74-9.  Back to cited text no. 10
Gregori NZ, Lam BL, Gregori G, Ranganathan S, Stone EM, Morante A, et al. Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis. Ophthalmology 2013;120:169-74.  Back to cited text no. 11
World Health Organization. Global Initiative for the Elimination of Avoidable Blindness: Action Plan 2006e2011. Geneva, Switzerland: World Health Organization; 2007.  Back to cited text no. 12
Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012;35:556-64.  Back to cited text no. 13
Nussenblatt RB, Kaufman SC, Palestine AG, Davis MD, Ferris FL 3rd. Macular thickening and visual acuity. Measurement in patients with cystoid macular edema. Ophthalmology 1987;94:1134-9.  Back to cited text no. 14
Klein R. Diabetic retinopathy. Annu Rev Public Health 1996;17:137-58.  Back to cited text no. 15
Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331:1480-7.  Back to cited text no. 16
Adamis AP, Miller JW, Bernal MT, D'Amico DJ, Folkman J, Yeo TK, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994;118:445-50.  Back to cited text no. 17
Patel RD, Messner LV, Teitelbaum B, Michel KA, Hariprasad SM. Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema. Am J Ophthalmol 2013;155:1038-44.e2.  Back to cited text no. 18
Wessel MM, Nair N, Aaker GD, Ehrlich JR, D'Amico DJ, Kiss S. Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular oedema. Br J Ophthalmol 2012;96:694-8.  Back to cited text no. 19
Oliver SC, Schwartz SD. Ultra-widefield fluorescein angiography. In: Arevalo JF, editor. Retinal Angiography and Optical Coherence Tomography. New York: Springer Science and Business Media, LLC; 2009. p. 407-17.  Back to cited text no. 20
Wessel MM, Aaker GD, Parlitsis G, Cho M, D'Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina 2012;32:785-91.  Back to cited text no. 21
Muqit MM, Marcellino GR, Henson DB, Young LB, Patton N, Charles SJ, et al. Optos-guided pattern scan laser (Pascal)-targeted retinal photocoagulation in proliferative diabetic retinopathy. Acta Ophthalmol 2013;91:251-8.  Back to cited text no. 22
Gupta V, Al-Dhibi HA, Arevalo JF. Retinal imaging in uveitis. Saudi J Ophthalmol 2014;28:95-103.  Back to cited text no. 23
Campbell JP, Leder HA, Sepah YJ, Gan T, Dunn JP, Hatef E, et al. Wide-field retinal imaging in the management of noninfectious posterior uveitis. Am J Ophthalmol 2012;154:908-11.e2.  Back to cited text no. 24
Seidensticker F, Neubauer AS, Wasfy T, Stumpf C, Thurau SR, Kampik A, et al. Wide-field fundus autofluorescence corresponds to visual fields in chorioretinitis patients. Clin Ophthalmol 2011;5:1667-71.  Back to cited text no. 25
Leder HA, Campbell JP, Sepah YJ, Gan T, Dunn JP, Hatef E, et al. Ultra-wide-field retinal imaging in the management of non-infectious retinal vasculitis. J Ophthalmic Inflamm Infect 2013;3:30.  Back to cited text no. 26
Mesquida M, Llorenç V, Fontenla JR, Navarro MJ, Adán A. Use of ultra-wide-field retinal imaging in the management of active Behçet retinal vasculitis. Retina 2014;34:2121-7.  Back to cited text no. 27
Prasad PS, Oliver SC, Coffee RE, Hubschman JP, Schwartz SD. Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion. Ophthalmology 2010;117:780-4.  Back to cited text no. 28
Tsui I, Kaines A, Havunjian MA, Hubschman S, Heilweil G, Prasad PS, et al. Ischemic index and neovascularization in central retinal vein occlusion. Retina 2011;31:105-10.  Back to cited text no. 29
Friedman DS, O'Colmain BJ, Muñoz B, Tomany SC, McCarty C, de Jong PT, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004;122:564-72.  Back to cited text no. 30
Gorin MB. Genetic insights into age-related macular degeneration: Controversies addressing risk, causality, and therapeutics. Mol Aspects Med 2012;33:467-86.  Back to cited text no. 31
Madhusudhan S, Beare N. Wide-field fluorescein angiography in wet age-related macular degeneration. Scientific World Journal 2014;2014:536161.  Back to cited text no. 32
Tan CS, Heussen F, Sadda SR. Peripheral autofluorescence and clinical findings in neovascular and non-neovascular age-related macular degeneration. Ophthalmology 2013;120:1271-7.  Back to cited text no. 33
Patel CK, Fung TH, Muqit MM, Mordant DJ, Brett J, Smith L, et al. Non-contact ultra-widefield imaging of retinopathy of prematurity using the Optos dual wavelength scanning laser ophthalmoscope. Eye (Lond) 2013;27:589-96.  Back to cited text no. 34
Bell DJ, Wilson MW. Choroidal melanoma: Natural history and management options. Cancer Control 2004;11:296-303.  Back to cited text no. 35
Shields CL, Shields JA, Kiratli H, De Potter P, Cater JR. Risk factors for growth and metastasis of small choroidal melanocytic lesions. Ophthalmology 1995;102:1351-61.  Back to cited text no. 36
Reznicek L, Stumpf C, Seidensticker F, Kampik A, Neubauer AS, Kernt M. Role of wide-field autofluorescence imaging and scanning laser ophthalmoscopy in differentiation of choroidal pigmented lesions. Int J Ophthalmol 2014;7:697-703.  Back to cited text no. 37
Kernt M, Schaller UC, Stumpf C, Ulbig MW, Kampik A, Neubauer AS. Choroidal pigmented lesions imaged by ultra-wide-field scanning laser ophthalmoscopy with two laser wavelengths (Optomap). Clin Ophthalmol 2010;4:829-36.  Back to cited text no. 38
Do DV, Haller JA. Coats disease. In: Ryan SJ, Schachat AP, editors. Retina. Philadelphia, PA: Elsevier; 2006. p. 1417-27.  Back to cited text no. 39
Shields JA, Shields CL, Honavar SG, Demirci H. Clinical variations and complications of Coats disease in 150 cases: The 2000 Sanford Gifford Memorial Lecture. Am J Ophthalmol 2001;131:561-71.  Back to cited text no. 40
Kang KB, Wessel MM, Tong J, D'Amico DJ, Chan RV. Ultra-widefield imaging for the management of pediatric retinal diseases. J Pediatr Ophthalmol Strabismus 2013;50:282-8.  Back to cited text no. 41
Haddad NM, Cavallerano JD, Silva PS. Von hippel-lindau disease: A genetic and clinical review. Semin Ophthalmol 2013;28:377-86.  Back to cited text no. 42
Maher ER. Von Hippel-Lindau disease. Curr Mol Med 2004;4:833-42.  Back to cited text no. 43
Chew EY. Ocular manifestations of von Hippel-Lindau disease: Clinical and genetic investigations. Trans Am Ophthalmol Soc 2005;103:495-511.  Back to cited text no. 44
Witmer MT, Cho M, Favarone G, Chan RV, D'Amico DJ, Kiss S. Ultra-wide-field autofluorescence imaging in non-traumatic rhegmatogenous retinal detachment. Eye (Lond) 2012;26:1209-16.  Back to cited text no. 45
Maamari RN, Keenan JD, Fletcher DA, Margolis TP. A mobile phone-based retinal camera for portable wide field imaging. Br J Ophthalmol 2014;98:438-41.  Back to cited text no. 46
Fijalkowski N, Zheng LL, Henderson MT, Wang SK, Wallenstein MB, Leng T, et al. Stanford University Network for Diagnosis of Retinopathy of Prematurity (SUNDROP): Five years of screening with telemedicine. Ophthalmic Surg Lasers Imaging Retina 2014;45:106-13.  Back to cited text no. 47
Paul Chan RV, Williams SL, Yonekawa Y, Weissgold DJ, Lee TC, Chiang MF. Accuracy of retinopathy of prematurity diagnosis by retinal fellows. Retina 2010;30:958-65.  Back to cited text no. 48


  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7], [Figure 8], [Figure 9], [Figure 10], [Figure 11]

This article has been cited by
1 The big warp: Registration of disparate retinal imaging modalities and an example overlay of ultrawide-field photos and en-face OCTA images
Tobin B. T. Thuma, John A. Bogovic, Kammi B. Gunton, Hiram Jimenez, Bernardo Negreiros, Jose S. Pulido, Tatsuya Inoue
PLOS ONE. 2023; 18(4): e0284905
[Pubmed] | [DOI]
2 Ultra-Widefield Imaging of Presumed Vitreous Base–Associated Vasculopathy: Assessment of Peripheral Retinal Hemorrhages and Microaneurysms
Aaron M. Fairbanks, Sandra Hoyek, Nimesh A. Patel
Journal of VitreoRetinal Diseases. 2023; : 2474126423
[Pubmed] | [DOI]
3 Ultra-widefield imaging technologies in the peripheral retinal pathologies
Lokman Balyen
Exploration of Medicine. 2023; : 1
[Pubmed] | [DOI]
4 Topographic distribution of retinal neovascularization in proliferative diabetic retinopathy using ultra-wide field angiography
Vatsala Nidhi, Saurabh Verma, Nawazish Shaikh, Shorya V Azad, Rohan Chawla, Pradeep Venkatesh, Rajpal Vohra, Vinod Kumar
Indian Journal of Ophthalmology. 2023; 71(8): 3080
[Pubmed] | [DOI]
5 Update on Retinal and Ocular Imaging
Samuel Gelnick, Minh Trinh, Ronni Lieberman
Advances in Ophthalmology and Optometry. 2022;
[Pubmed] | [DOI]
6 An optometrist’s guide to the top candidate inherited retinal diseases for gene therapy
Fleur O’Hare, Thomas L Edwards, Monica L Hu, Doron G Hickey, Alexis C Zhang, Jiang-Hui Wang, Zhengyang Liu, Lauren N Ayton
Clinical and Experimental Optometry. 2021; 104(4): 431
[Pubmed] | [DOI]
7 Ultra-Widefield Fluorescein Angiography Image Brightness Compensation Based on Geometrical Features
Wojciech Wieclawek, Marta Danch-Wierzchowska, Marcin Rudzki, Bogumila Sedziak-Marcinek, Slawomir Jan Teper
Sensors. 2021; 22(1): 12
[Pubmed] | [DOI]
8 The role of multimodal imaging and vision function testing in ABCA4-related retinopathies and their relevance to future therapeutic interventions
Saoud Al-Khuzaei, Mital Shah, Charlotte R. Foster, Jing Yu, Suzanne Broadgate, Stephanie Halford, Susan M. Downes
Therapeutic Advances in Ophthalmology. 2021; 13: 2515841421
[Pubmed] | [DOI]
9 Comparison of two ultra-widefield imaging for detecting peripheral retinal breaks requiring treatment
Jayant Kumar, Piyush Kohli, Naresh Babu, Krishin Krishnakumar, Dhipak Arthur, Kim Ramasamy
Graefe's Archive for Clinical and Experimental Ophthalmology. 2021; 259(6): 1427
[Pubmed] | [DOI]
10 Diabetic retinopathy and ultrawide field imaging
Mohamed Ashraf, Siamak Shokrollahi, Recivall P. Salongcay, Lloyd Paul Aiello, Paolo S. Silva
Seminars in Ophthalmology. 2020; 35(1): 56
[Pubmed] | [DOI]
11 Role of Ultra-widefield Imaging in Eales’ Disease: A Case Series
Aditi Ashok Kumar Agarwal, Ritika Sharma, Jyotirmay Biswas
Ocular Immunology and Inflammation. 2020; 28(8): 1187
[Pubmed] | [DOI]
12 Peripheral capillary non-perfusion in treatment-naïve proliferative diabetic retinopathy associates with postoperative disease activity 6 months after panretinal photocoagulation
Thomas Lee Torp, Ryo Kawasaki, Tien Yin Wong, Tunde Peto, Jakob Grauslund
British Journal of Ophthalmology. 2019; 103(6): 816
[Pubmed] | [DOI]
13 Degenerative Peripheral Retinoschisis: Observations From Ultra-Widefield Fundus Imaging
Aristomenis Thanos, Bozho Todorich, Sirichai Pasadhika, Tahsin Khundkar, David Xu, Atul Jain, Cindy Ung, Lisa J. Faia, Antonio Capone, George A. Williams, Yoshihiro Yonekawa, David Sarraf, Jeremy D. Wolfe
Ophthalmic Surgery, Lasers and Imaging Retina. 2019; 50(9): 557
[Pubmed] | [DOI]
14 Comparison of Digital Widefield Retinal Imaging With Indirect Ophthalmoscopy in Pediatric Patients
Hema L. Ramkumar, Megha Koduri, Jordan Conger, Shira L. Robbins, David Granet, William R. Freeman, Luke Saunders, Henry Ferreyra, Robert N. Weinreb, Eric Nudleman
Ophthalmic Surgery, Lasers and Imaging Retina. 2019; 50(9): 580
[Pubmed] | [DOI]
15 Protecting Vision in Patients With Diabetes With Ultra-Widefield Imaging: A Review of Current Literature
Rishi P. Singh, Jessica Hsueh, Michael M. Han, Ajay E. Kuriyan, Felipe F. Conti, Nathan Steinle, Christina Y. Weng, Robert W. Wong, Jose A. Martinez, Charles C. Wykoff
Ophthalmic Surgery, Lasers and Imaging Retina. 2019; 50(10): 639
[Pubmed] | [DOI]
16 Surface-Coil MRI for Small Peripheral Choroidal Melanoma: Imaging in a Rabbit Eye Model
Larissa Ioannidi, Konstantinos Seliniotakis, Georgios Bontzos, George Sourvinos, Viktor Haniotis, Irene Tsiapa, Thomas G. Maris, Efstathios T. Detorakis
Ocular Oncology and Pathology. 2018; 4(6): 364
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
Evolution of Ult...
Diabetic Retinopathy
Retinal Vein Occ...
Age-Related Macu...
Retinopathy of P...
Choroidal Melanoma
Coats' Disease
Von Hippel-Linda...
Retinal Detachment
Future Directions
Article Figures

 Article Access Statistics
    PDF Downloaded677    
    Comments [Add]    
    Cited by others 16    

Recommend this journal