Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 795
  • Home
  • Print this page
  • Email this page

   Table of Contents      
CASE REPORT
Year : 2020  |  Volume : 68  |  Issue : 11  |  Page : 2543-2544

Persistent loss of marginal corneal arcades after chemical injury


1 Department of Ophthalmology, Royal Liverpool University Hospital, Liverpool, UK; Department of Ophthalmology, Hospital Costa del Sol, Marbella, Spain
2 Department of Ophthalmology, Royal Liverpool University Hospital, Liverpool, UK; Department of Biomedical Sciences, Humanitas University, Milan, Italy
3 Department of Ophthalmology, Royal Liverpool University Hospital, Liverpool, UK
4 Department of Ophthalmology, Hospital Costa del Sol, Marbella, Spain; Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
5 Department of Ophthalmology, Royal Liverpool University Hospital; Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom

Date of Submission25-Jun-2020
Date of Acceptance03-Oct-2020
Date of Web Publication26-Oct-2020

Correspondence Address:
Dr. Carlos Rocha de Lossada
Department of Corneal and External Eye Diseases, St Paulfs Eye Unit, Royal Liverpool University Hospital, Prescot St, L78XP, Liverpool

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijo.IJO_2056_20

Rights and Permissions
  Abstract 


Changes in the limbal microvasculature following a chemical eye injury are essential for prognosis and management. At the slit lamp, it can be difficult to assess, here using fluorescein and indocyanine green angiography we show that anterior segment angiography may be informative to assess objectively the limbal microvascular changes over the follow-up period.

Keywords: Anterior segment OCT, anterior segment angiography, limbal ischemia, marginal corneal arcades, ocular chemical burn


How to cite this article:
Rocha de Lossada C, Pagano L, Gadhvi KA, Borroni D, Figueiredo G, Kaye S, Romano V. Persistent loss of marginal corneal arcades after chemical injury. Indian J Ophthalmol 2020;68:2543-4

How to cite this URL:
Rocha de Lossada C, Pagano L, Gadhvi KA, Borroni D, Figueiredo G, Kaye S, Romano V. Persistent loss of marginal corneal arcades after chemical injury. Indian J Ophthalmol [serial online] 2020 [cited 2020 Nov 25];68:2543-4. Available from: https://www.ijo.in/text.asp?2020/68/11/2543/299043



Chemical injury to the ocular surface is an ophthalmic emergency that may result in damage to the marginal corneal arcades (MCA), limbal microvasculature, and limbal epithelial stem cell niche.[1],[2],[3] Accurate evaluation and monitoring of this microvasculature is essential for prognosis and management, if assessed at the slit lamp it can be challenging.[1],[2] Fluorescein and indocyanine green angiography (FA and ICGA), and to a lesser extent optical coherence tomography angiography (OCTA), have been shown to be informative in the diagnosis of these vascular changes.[4],[5],[6]

There is little information, however, on long term longitudinal changes to the MCA and limbal vasculature following a chemical injury, which may be of importance in planning clinical and surgical interventions that depend on a healthy supportive peri-limbal microvasculature. We report the vascular changes that occur in a patient over a 6-year time period following a chemical injury.


  Case Report Top


A 57-year-old lady presented with a stage II (Roper-Hall classification[7]) alkaline chemical injury to her right eye. At presentation, her best-corrected visual acuity (BCVA) was 20/30 Snellen. She had an inferonasal epithelial defect crossing the limbus with corneal stromal haze and a clinical appearance of limbal ischemia over four clock hours [Figure 1]a. She was treated with abundant irrigation, followed by topical steroids, antimicrobials, ascorbic acid, and systemic tetracycline. The patient was followed up with regular slit-lamp biomicroscopy, ICGA, and FA using a scanning laser ophthalmo-scope (HRA2; Heidelberg Engineering, Heidelberg, Germany) to quantify the area of limbal ischemia and vascular changes. At days 1 and 7 after presentation, there was evident inferonasal limbal ischemia with extensive loss of the MCA, accompanied by both early and late fluorescein and indocyanine green leakage [Figure 2].
Figure 1: Color anterior segment photographs of the patient's right eye, showing (a) six clock hours of nasal limbal ischemia with five clock hours of associated corneal opacity, (b) resolved limbal ischemia and clear cornea 6 years post-injury

Click here to view
Figure 2: Serial fluorescein and indocyanine green angiographs early and late phase at different time points. Images of the fellow eye to compare the pattern and the restored peri-limbal vasculature post-injury. Green arrows show leakage. Orange arrows show loss of marginal corneal arcade. Yellow lines show the ischemic area

Click here to view


Three months after the injury, although there was a partial recovery of the peri-limbal vasculature, areas of loss of vascularity, especially the MCA remained, evident on ICGA [Figure 2]. Recovery of the peri-limbal vasculature and MCA continued, however, even after six years, there were still areas of capillary loss and earlier fluorescein leakage in comparison to the unaffected fellow eye [Figure 2]. BCVA remained at 20/20 and clinically there was residual corneal scarring with lipid deposition, the ocular surface remained stable with no epithelial breakdown [Figure 1]b.


  Discussion Top


Clinical assessment of limbal ischemia after chemical injury is challenging and studies have demonstrated low clinical agreement and inter-observer consistency.[1] FA and ICGA are useful tools in identifying, quantifying, and monitoring the MCA and limbal vasculature.[2],[4],[5] Our case of chemical injury highlights the limits of clinical color photography in detecting these vascular abnormalities. It is of note that the vascular abnormalities remained over a 6-year period and were not apparent on slit-lamp biomicroscopy or color photography. Although OCTA is an alternative and less invasive procedure than FA and ICGA, it provides limited information about vessel maturity. Early fluorescein leakage is a maker of vessel immaturity and or vessel damage. ICG does not leak from healthy vessels and the leakage present in this case indicates the extent of the vascular damage. This indicates that even in those areas where the vasculature was present, the vessels were damaged and unlikely to provide adequate support to the limbal tissue. This is important as Huang et al. reported that limbal epithelial stem cells cannot maintain their stemness or proliferation without the support of the limbal microvasculature net microenvironment.[8]


  Conclusion Top


Monitoring the changes in the MCA and limbal vasculature following a chemical injury using FA and ICGA is important to assess the vascular injury and the extent of its recovery.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Kam KW, Patel CN, Nikpoor N, Yu M, Basu S. Limbal ischemia: Reliability of clinical assessment and implications in the management of ocular burns. Indian J Ophthalmol 2019;67:32-6.  Back to cited text no. 1
[PUBMED]  [Full text]  
2.
Fung SSM, Stewart RMK, Dhallu SK, Sim DA, Keane PA, Wilkins MR, et al. Anterior segment optical coherence tomographic angiography assessment of acute chemical injury. Am J Ophthalmol 2019;205:165-74.  Back to cited text no. 2
    
3.
Nowell CS, Radtke F. Corneal epithelial stem cells and their niche at a glance. J Cell Sci 2017;130:1021-5.  Back to cited text no. 3
    
4.
Zheng Y, Kaye AE, Boker A, Stewart RK, Tey A, Ahmad S, et al. Marginal corneal vascular arcades. Investig Ophthalmol Vis Sci 2013;54:7470-7.  Back to cited text no. 4
    
5.
Brunner M, Romano V, Steger B, Vinciguerra R, Lawman S, Williams B, et al. Imaging of corneal neovascularization: Optical coherence tomography angiography and fluorescence angiography. Investig Ophthalmol Vis Sci 2018;59:1263-9.  Back to cited text no. 5
    
6.
Anijeet DR, Zheng Y, Tey A, Hodson M, Sueke H, Kaye SB. Imaging and evaluation of corneal vascularization using fluorescein and indocyanine green angiography. Investig Ophthalmol Vis Sci 2012;53:650-8.  Back to cited text no. 6
    
7.
Roper-Hall MJ. Thermal and chemical burns. Trans Ophthalmol Soc U K 1965;85:631-3.  Back to cited text no. 7
    
8.
Huang M, Wang B, Wan P, Liang X, Wang X, Liu Y, et al. Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells. Cell Tissue Res 2015;359:547-63.  Back to cited text no. 8
    


    Figures

  [Figure 1], [Figure 2]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Case Report
Discussion
Conclusion
References
Article Figures

 Article Access Statistics
    Viewed385    
    Printed0    
    Emailed0    
    PDF Downloaded41    
    Comments [Add]    

Recommend this journal