Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 5050
  • Home
  • Print this page
  • Email this page
Year : 2021  |  Volume : 69  |  Issue : 3  |  Page : 594-597

Study 3: Assessment of events during surgery on posterior polar cataracts using intraoperative optical coherence tomography

Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India

Correspondence Address:
Dr. Amar Pujari
Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, New Delhi - 110 029
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijo.IJO_1052_20

Rights and Permissions

Purpose: To describe the changes along nucleo-epinuclear and the opacity-capsular junction during hydrodelineation and the entire period of phacoemulsification using intraoperative optical coherence tomography (iOCT). Methods: A total of 12 eyes of 12 patients with clinically confirmed posterior polar cataract, who underwent cataract surgery by a single surgeon under the direct guidance of iOCT. The changes along nucleo-epinuclear junction and opacity-capsular junction during/following hydrodelineation and the changes along the opacity-capsular junction following nucleus removal, capsular changes before the opacity removal, and its dynamic changes throughout the surgical procedure were studied. Results: The mean age of patients was 48.25 ± 7.89 years. Eight of them were males and the right eye was operated in seven patients. With regular hydrodelineation, optimal separation of the nucleus-epinuclear layer was evident in 11 patients. Once a golden ring is achieved through the hydro procedure, then repeated attempts can be performed within it to decrease the chances of capsular damage. Fracture of the posterior opacity with tension over the underlying capsule (n = 1), inadvertent hydro dissection while performing hydrodelineation (n = 1), continuous posterior capsular billowing (n = 2), and posterior capsular ruptures (n = 2) were encountered in this observation with even well-judged surgical maneuvering. Conclusion: iOCT provides a better understanding of real-time changes along different layers of the human lens during posterior polar cataract surgery. The observations obtained here are likely to help in minimizing inadvertent complications in the future.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded33    
    Comments [Add]    

Recommend this journal