Indian Journal of Ophthalmology

BRIEF COMMUNICATION
Year
: 2017  |  Volume : 65  |  Issue : 11  |  Page : 1235--1238

Optical coherence tomography angiography features of acute macular neuroretinopathy in dengue fever


Kanika Aggarwal, Aniruddha Agarwal, Deeksha Katoch, Mansi Sharma, Vishali Gupta 
 Advanced Eye Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Correspondence Address:
Vishali Gupta
Advanced Eye Center, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh - 160 012
India

Abstract

A 39-year-old female with dengue fever presented with decreased vision in both eyes. Visual acuity was 20/200 and 20/80 in the right eye (OD) and left eye (OS), respectively. Fundus showed granular, grayish-white lesions in the parafoveal region in OD. Multimodal imaging including optical coherence tomography angiography (OCTA), optical coherence tomography (OCT), and fluorescein angiography (FA) was performed. FA showed late hyperfluorescence with few microaneurysms in OS. OCT showed hyperreflectivity in various layers, suggestive of acute macular neuroretinopathy (AMN). OCTA showed disruption of retinal capillary plexuses. This case shows how OCTA provides newer insights into the pathogenesis of AMN lesions in dengue fever.



How to cite this article:
Aggarwal K, Agarwal A, Katoch D, Sharma M, Gupta V. Optical coherence tomography angiography features of acute macular neuroretinopathy in dengue fever.Indian J Ophthalmol 2017;65:1235-1238


How to cite this URL:
Aggarwal K, Agarwal A, Katoch D, Sharma M, Gupta V. Optical coherence tomography angiography features of acute macular neuroretinopathy in dengue fever. Indian J Ophthalmol [serial online] 2017 [cited 2021 Apr 20 ];65:1235-1238
Available from: https://www.ijo.in/text.asp?2017/65/11/1235/218062


Full Text

Ocular involvement in dengue fever is a relatively rare occurrence, with reported incidence varying from 7.9% to 40.3%.[1],[2] The posterior segment is most commonly affected, and sight-threatening complications can occur in 5%–8% of cases.[3] The reported manifestations of dengue maculopathy include macular hemorrhage, retinal edema, foveolitis, along with other associated findings such as arteriolar sheathing, cotton-wool spots, perifoveal telangiectasia, and microaneurysms. Recently, acute macular neuroretinopathy (AMN) has been associated with dengue maculopathy.[4] AMN lesions are characterized by hyporeflective parafoveal wedge-shaped areas on near-infrared imaging due to underlying deep capillary plexus (DCP) ischemia which shows as hyperreflectivity of the outer retinal layers on optical coherence tomography (OCT).[5] Such DCP ischemic changes are usually not discernible by fluorescein angiography (FA). Optical coherence tomography angiography (OCTA) is a newer modality that allows noninvasive and high-resolution three-dimensional mapping of the retinal and choroidal circulations using endoluminal flow as contrast.[6] This case report highlights the role of OCTA in delineating the level of pathological microvascular alterations in AMN associated with dengue maculopathy.

 Case Report



A 39-year-old female of Indian origin presented with complaints of diminution of vision in both eyes for the past 7 days. The decreased vision was associated with pain and redness in the right eye (OD) and was painless in the left eye (OS). She provided a history of febrile illness 15 days before the onset of ocular complaints, for which she had received treatment from outside. Laboratory workup revealed serology (immunoglobulin M) positive for dengue. On examination, her best-corrected visual acuity (BCVA) was 20/200 in the OD and 20/80 in the OS with intraocular pressure of 14 and 15 mmHg, respectively. Anterior segment examination revealed occasional cells in the anterior chamber and anterior vitreous in both eyes. Posterior segment examination showed the presence of grayish-white lesions with a granular appearance in the parafoveal region in OD and a few hard exudates and microaneurysms in OS [Figure 1]. FA was essentially normal in the early phase, with late phase showing mild parafoveal leakage in both eyes with microaneurysms in the OS. OCT scan passing through the macula of OD showed the presence of hyperreflectivity in the inner nuclear layer, outer plexiform layer (OPL), and outer nuclear layer (ONL) with disruption of the external limiting membrane (ELM), ellipsoid zone (EZ), and interdigitation zone (IZ) in the subfoveal region [Figure 2]. The OCT scan of OS revealed the presence of retinal thickening with a few intraretinal cystoid spaces [Figure 3]. OCTA en face images showed disruption of both the superficial capillary plexus (SCP) and DCP with flow deficit in the foveal region. There was an increase in the size of the foveal avascular zone. There was the presence of hairpin loop configuration of the adjacent retinal capillaries, suggestive of retinal capillary ischemia in OD. These changes persisted till the last follow-up visit at 6 months [Figure 4]. OCTA image of OS showed the presence of a hyperreflective round lesion corresponding to the microaneurysm seen on FA without any loss of SCP or DCP flow. The patient was treated with oral corticosteroids (1 mg/day oral prednisone) tapered over a 2-month period. The final BCVA at 6-month follow-up improved to 20/40 in OD and 20/50 in OS [Figure 1].{Figure 1}{Figure 2}{Figure 3}{Figure 4}

 Discussion



Classically, dengue maculopathy has been associated with retinal edema, hemorrhages, and foveolitis, which is characterized by the foveal outer neurosensory retinal disruption.[7] AMN is a recently reported unusual manifestation of dengue maculopathy.[4] As such, AMN has been associated with conditions such as oral contraceptives, flu-like illness, and certain hypotensive states such as nocturnal hypotension.[5],[8] The lesions of AMN are characteristic and typically localized to the outer retina due to ischemia of the DCP. Features of AMN include hyperreflectivity of the OPL and ONL and disruption of EZ, ELM, and IZ. In our index case, such features were observed on OCT scans along with deep capillary ischemia on OCTA. In addition, there was superficial retinal plexus ischemia as well. Capillary endothelial dysfunction or occlusion of precapillary arterioles due to immune complex deposition is the likely underlying mechanism of SCP and DCP ischemia in dengue maculopathy. Such arteriolar hypoperfusion has been postulated to be the pathophysiologic mechanism of retinal plexus ischemic entities such as AMN, cotton-wool spots, and paracentral acute middle maculopathy.[9] In conditions with arteriolar ischemia, such as dengue, variable involvement of superficial/deep retinal vascular plexus can occur as in our case, who had AMN with superficial plexus involvement [Figure 4]. In addition, our patient showed the presence of microaneurysms with mild leakage resulting in retinal edema in OS [Figure 1] and [Figure 3]. While there was an improvement in macular edema in OS over the follow-up, OD showed the persistence of ischemia and thinning of ONL over time [Figure 2].

Using OCTA, changes of AMN in our patient with dengue maculopathy are well appreciated at baseline and follow-up. In a recent case, retinal microvascular changes were demonstrated using OCTA in a patient with dengue fever with no clinically appreciable fundus lesions.[10] However, our patient shows features of AMN clinically, on imaging and OCTA without much change in ischemia at 6-month follow-up.

 Conclusion



This case highlights the involvement of retinal capillaries at various levels (superficial/intermediate and deep) among patients with dengue maculopathy. OCTA appears to hold great value in demonstrating the spectrum of retinal ischemic changes from ophthalmoscopically undetectable lesion to AMN-like features in patients of dengue maculopathy. This technology provides insights into the level of pathophysiological alterations in these eyes and helps in determining the visual prognosis.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1Gupta A, Srinivasan R, Setia S, Soundravally R, Pandian DG. Uveitis following dengue fever. Eye (Lond) 2009;23:873-6.
2Beral L, Merle H, David T. Ocular complications of dengue fever. Ophthalmology 2008;115:1100-1.
3Su DH, Bacsal K, Chee SP, Flores JV, Lim WK, Cheng BC, et al. Prevalence of dengue maculopathy in patients hospitalized for dengue fever. Ophthalmology 2007;114:1743-7.
4Munk MR, Jampol LM, Cunha Souza E, de Andrade GC, Esmaili DD, Sarraf D, et al. New associations of classic acute macular neuroretinopathy. Br J Ophthalmol 2016;100:389-94.
5Bhavsar KV, Lin S, Rahimy E, Joseph A, Freund KB, Sarraf D, et al. Acute macular neuroretinopathy: A comprehensive review of the literature. Surv Ophthalmol 2016;61:538-65.
6Agrawal R, Xin W, Keane PA, Chhablani J, Agarwal A. Optical coherence tomography angiography: A non-invasive tool to image end-arterial system. Expert Rev Med Devices 2016;13:519-21.
7Juanarita J, Azmi MN, Azhany Y, Liza-Sharmini AT. Dengue related maculopathy and foveolitis. Asian Pac J Trop Biomed 2012;2:755-6.
8Thanos A, Faia LJ, Yonekawa Y, Randhawa S. Optical coherence tomographic angiography in acute macular neuroretinopathy. JAMA Ophthalmol 2016;134:1310-4.
9Yu S, Pang CE, Gong Y, Freund KB, Yannuzzi LA, Rahimy E, et al. The spectrum of superficial and deep capillary ischemia in retinal artery occlusion. Am J Ophthalmol 2015;159:53-630.
10Tavassoli S, Carreño E, Teoh SC, Theodoropoulou S, Bailey C, Lee RW, et al. Optical coherence tomography angiography findings in dengue-related maculopathy: A Case report. Ophthalmic Surg Lasers Imaging Retina 2016;47:1057-60.