Close
  Indian J Med Microbiol
 

Figure 4: Optical coherence tomography angiography findings in dengue-associated acute macular neuroretinopathy. (a) Baseline optical coherence tomography angiography en face image of the superficial capillary plexus in the right eye shows disruption of the normal flow pattern of the superficial capillary plexus in the parafoveal region, leading to enlargement of the foveal avascular zone. (b) Baseline optical coherence tomography angiography en face image of the deep capillary plexus of the right eye showing similar disruption of capillary flow with hairpin loop configuration (yellow circle) of the surrounding capillaries. (c) Baseline optical coherence tomography angiography en face image of the superficial capillary plexus of the left eye shows a normal capillary flow pattern. (d) Baseline optical coherence tomography angiography en face image of the deep capillary plexus of the left eye shows the presence of a hyperreflective round structure corresponding to the microaneurysm seen on fluorescein angiography (yellow arrow). (e and f) Optical coherence tomography angiography en face images of the superficial capillary plexus and deep capillary plexus respectively at 6-month follow-up visit shows no reduction in the capillary flow void in the right eye. (g and h) Optical coherence tomography angiography en face images of the left eye at 6-month follow-up shows a normal flow pattern in the superficial capillary plexus (g), while the deep capillary plexus shows the persistence of the microaneurysm (h)

Figure 4: Optical coherence tomography angiography findings in dengue-associated acute macular neuroretinopathy. (a) Baseline optical coherence tomography angiography en face image of the superficial capillary plexus in the right eye shows disruption of the normal flow pattern of the superficial capillary plexus in the parafoveal region, leading to enlargement of the foveal avascular zone. (b) Baseline optical coherence tomography angiography en face image of the deep capillary plexus of the right eye showing similar disruption of capillary flow with hairpin loop configuration (yellow circle) of the surrounding capillaries. (c) Baseline optical coherence tomography angiography en face image of the superficial capillary plexus of the left eye shows a normal capillary flow pattern. (d) Baseline optical coherence tomography angiography en face image of the deep capillary plexus of the left eye shows the presence of a hyperreflective round structure corresponding to the microaneurysm seen on fluorescein angiography (yellow arrow). (e and f) Optical coherence tomography angiography en face images of the superficial capillary plexus and deep capillary plexus respectively at 6-month follow-up visit shows no reduction in the capillary flow void in the right eye. (g and h) Optical coherence tomography angiography en face images of the left eye at 6-month follow-up shows a normal flow pattern in the superficial capillary plexus (g), while the deep capillary plexus shows the persistence of the microaneurysm (h)